

Status and highlights from the CMS experiment

Gautier Hamel de Monchenault

on behalf of the Collaboration

HEP 2022 — Conference on Recent Developments in High Energy Physics and Cosmology Thessaloniki, Greece June 2022

ault ratior

The CMS Collaboration

2280 Authors

210 Member Institutes

+ 8 Cooperating and 23 Associated Institutes

from

55 countries or regions

USA 698/1658

Russian Fed. 102/308

> **Other States** 237/802

4 %

June 2022

The CMS Detector

June 2022

General-purpose LHC detector

CMS Status and Highlights

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

> PRESHOWER Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER

Successful Completion of LS2

LS2 = Long Shutdown 2 (2019-2021) = 1187 days

June 2022

CMS Status and Highlights

Main achievements

- CSC (forward muon detectors) readout
- HCAL SiPM readout and electronics
- refurbished pixel tracker with new Layer 1
- magnet fully re-commissioned at 3.8 T
- improved beam monitors and luminometers

Preparation to High Luminosity LHC

- new beam pipe
- first GEM muon layer (GE1/1)
- Phase-2 muon demonstrators
- HLT: hybrid CPU/GPU transition completed

CMS is Back and Running!

Successful Pilot Beam Test (Nov 2021)

CMS closed on March 4

Commissioning with p-beams (since Apr 2022)

- "splash" events
- collisions in stable beams at injection energy (900 GeV)
- test collisions at Run-3 energy (13.6 TeV)

CMS Status and Highlights

June 2022

More than **6.6M cosmic ray events** collected for alignment and calibration purposes

Commissioning and Preparation for Run-3

Examples of detector distributions (tracker)

CMS Status and Highlights

Submitted to JINST

June 2022

Examples of software improvements

CMS Commissioning

- DAQ and overall stability data taking confirmed
- full calibration and reconstruction chain exercised
- GEM efficiency and trigger integration with CSC completed
- trigger menus (L1/HLT) validated, with enhanced capabilities
- smooth computing operation
- first physics distributions

Towards Run-3

Run-3

- proton-proton collisions at $\sqrt{s} = 13.6 \text{ TeV}$
- high instantaneous luminosity with levelling

 $\mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

• pileup $\mu = 55-58 (\pm 2.5\%)$

2022

- July 5 First 13.6 TeV collisions and start of intensity ramp-up
- Aug. 4-Sept. 5 First pp running period (> 1,200 bunches)
- Oct. 1-Nov. 2 (after TS1) Second pp running period
- Nov. 14-Dec. 11 (after TS2) PbPb ion running ($\sqrt{s_{NN}} = 6.8$ TeV, TBC)

Pile-up levelling versus time -170 160 (prad) 120 (prad) <u>B</u> 8.0 ф/2 9 0.6 140 0.4 L130 12 2 10 Time (h) crossing angle levelling only from 2023 onwards

Robust-to-PU physics object reconstruction

- photons
- electrons, muons
- T-leptons
- jets/MET, b- and c-jets
- boosted W/Z/H/top

CMS is fully operational for the start of Run-3 physics!

Run-2 Performance

Thanks to a huge effort of improvement in calibration procedures and software tools, CMS Run-2 analyses are now performed on an optimally calibrated data sample (Legacy Run-2 data)

Comparison of Z mass resolution before and after final calibration included in Legacy Run 2 data

CMS-EGM-17-001 JINST 16 (2021) P05014

JINST 16 (2021) P07001

June 2022

Extensive measurements of Run-2 L1 and HLT trigger performance

Impressive improvement in analysis techniques with intensive use of stateof-the-art ML techniques, deep-learning neural nets, etc.

- PU mitigation
- b- and c-jet tagging
- τ-lepton reconstruction
- Lorentz-boosted jet tagging and mass

Towards High-Luminosity LHC

New LS3 schedule

• Run-3 extended by 1 year → 2022-2025

270 fb⁻¹ (PU50)

- LS3 extended to 3 years → 2026-2028
- start of Run-4: 2029

CMS Status and Highlights

June 2022

Possible scenario (CERN DG, Jan. 2022)

- Run 4 $(2029-2032) = 740 \text{ fb}^{-1} (PU140)$
- Run 5 (2035-2038) = 1300 fb^{-1} (PU200)
- Run 6? $(2040-2042) = 750 \text{ fb}^{-1} (PU200)$

Expect **2500 fb**⁻¹ by the end of **2038 3250 fb**⁻¹ by the end of **2042**

CMS Publications

June 2022

The Higgs Boson Turns 10!

9 years and eleven months ago

June 2022

The Higgs Boson Turns 10!

June 2022

$m_{\rm H} = 125.38 \pm 0.14 \,({\rm total}) \,{\rm GeV}$

CMS-PAS-HIG-19-005

Observation independently in all 5 decay modes

Higgs Production and Decay

Signal strength modifiers for the production × decay mode

CMS Status and Highlights

CMS-PAS-HIG-19-005

will be updated (very) soon with full Run-2 data

Higgs ttH and tH Production

2018: First observation at 5.2 (4.2) σ obtained by combing independent searches in the main decay modes with Run-1+Run-2 (2016) data

> CMS-HIG-17-035 PRL 120 (2018) 231801

Since then, with full Run-2 data:

- strong evidence 4.7 (5.2) σ in the multi lepton final state
- observation in the H $\rightarrow \gamma \gamma$ decay mode
- comprehensive study of CP structure and constraints on anomalous couplings combining $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$

CMS Status and Highlights

June 2022

Higgs Differential Cross Sections

• $H \rightarrow ZZ^* \rightarrow 4\ell$

Differential fiducial production cross sections, unfolded for selection efficiency and resolution effects and compared to theoretical calculations

June 2022

Higgs CP Properties of the $H \rightarrow \tau \tau$ Decay

 $\phi_{\rm CP}$: a variable sensitive to the polarisation of the τ leptons

- angle between the τ decay planes in the H rest frame
- 0° in the CP-even case (SM) vs ±90° in the CP-odd case
- measured using either the 1-prong momentum and impact parameter vector, the $\pi^0(\rightarrow\gamma\gamma)$ momentum or $\rho^{0}(\rightarrow \pi^{+}\pi^{-})$ momentum (3-prong)

June 2022

Zoom on the interaction region: impact parameter and secondary vertex

Rare Higgs Decays: $H \rightarrow \mu\mu$ and $H \rightarrow Z\gamma$

 $H \rightarrow \mu^+ \mu^-$

CMS-HIG-19-006 JHEP 01 (2021) 148

Phys. Briefing

improved sensitivity thanks to the use of advanced ML techniques in the VBF analysis

$$\mu(\mu\mu) = 1.19^{+0.41}_{-0.39} \,(\text{stat})^{+0.17}_{-0.16} \,(\text{syst})$$

Obs. (exp.) significance: 3.0 (2.5) σ

First evidence of Higgs coupling to the second generation

$$\kappa_{\mu} = 1.07 \pm 0.22 \,(\text{at } 68\% \text{CL})$$

June 2022

CMS-HIG-19-014 Submitted to JHEP

Obs. (exp.) significance: 2.7 (1.2) σ

most of the excess in one of the VBF categories

 $B(H \rightarrow Z\gamma)/B(H \rightarrow \gamma\gamma) = 1.5^{+0.7}_{-0.6}$ consistent with the SM expectation 0.69 ± 0.04 at the 1.5σ level

Boosted Higgs Boson

A Deep Feed-Forward Neural

Network using jet properties information and secondary vertices associated to the jets (43 input variables)

- 13% improvement in jet resolution
- 20% improvement in di-jet mass resolution (as measured in data)

CMS-HIG-18-027 CSBS 4 (2020) 10

June 2022

CMS Status and Highlights

Full Run-2, 137 fb⁻¹

$p_T^H > 450 \text{ GeV}$ merged jets

huge improvement thanks to dedicated "deep double b tagger" (DDBT)

An Inclusive search for highly boosted $H \rightarrow b\bar{b}$

a technique validated with $Z \rightarrow bb$

• a small (1.9 σ) excess is observed $\mu_{\rm H} = 3.7^{+1.6}_{-1.5}$ 2.5 σ (0.7 σ exp)

> CMS-HIG-19-003 JHEP 12 (2020) 085

Boosted Higgs Boson and Charm Decay

An Inclusive search for highly-boosted $H \rightarrow c\bar{c}$

An search for boosted $VH(H \rightarrow c\bar{c})$

resolved

merged

Validation:

$$\mu_{Z \to c\bar{c}} = 1.06^{+0.18}_{-0.15}$$
 (>10 σ)

 $H(c\bar{c})$ signal strength (fixing $Z(c\bar{c})$ to SM)

- $\mu_{\rm H} = 8 \, {}^{+20}_{-19}$
- obs (exp) upper limit @95% CL: 45 (38) × SM

CMS-PAS-HIG-21-012

CMS Status and Highlights

June 2022

BDTs against background

- c-jet charm tagging with **DeepJet** - c-jet energy regression using **DNN** - kinematic fit in 2-lepton channels

- mass regression using **ParticleNet**

Validation:

 $\mu_{VZ(Z \to c\bar{c})} = 1.01^{+0.23}_{-0.21}$ 5.7 σ (5.9 σ exp)

VH(cc̄) signal strength

- $\mu_{VH(c\bar{c})} = 7.1 \frac{+3.8}{-3.5}$
- obs (exp) upper limit @95% CL: $14(7.6) \times SM$
- Constraint of the charm Yukawa

$$1.1 < |\kappa_{\rm c}| < 5.5$$
 @ 95%CL

CMS-HIG-21-008 Submitted to PRL

Boosted Higgs Boson and Charm Decay

Z(ee)H(cc) resolved candidate

June 2022

W(ev)H(cc) boosted candidate

Search for Double Higgs Production

The observation of double Higgs production is one of the motivations for HL-LHC

Double Higgs production involves these amplitudes:

Constraints on anomalous HHH (κ_{λ}) and VVHH (κ_{2V}) couplings

The goal in Run-3 is either to find an anomalous production (resonant or non-resonant) or to set crosssection limits closer to the SM expectation

In the SM: $\lambda_{
m HHH} = \lambda_{
m HHH}$

CMS Status and Highlights

June 2022

Run-2 2016, 35.9 fb⁻¹

CMS-HIG-17-030 PRL 122 (2019) 121803

Combination of HH searches σ/σ_{SM} < 22 (13) at 95% CL

$$\lambda = m_{\rm H}^2 / 2v^2$$

Search for Double Higgs Production

CMS Status and Highlights

June 2022

Inclusive HH $\rightarrow \gamma \gamma b \overline{b}$ σ/σ_{SM} < 7.7 (5.2) at 95% CL

Inclusive HH $\rightarrow b\overline{b}b\overline{b}$ σ/σ_{SM} < **3.6** (7.3) at 95% CL Full Run-2, 137 fb⁻¹

Run-2 analyses already reaching much higher sensitivity than anticipated

boosted bbbb

CMS-B2G-22-003 submitted to PRL

 $\kappa_{2V}=0$ excluded with 6.3 sd!

Inclusive HH $\rightarrow \tau \tau b \overline{b}$ $\sigma/\sigma_{SM} < 3.3$ (5.2) at 95% CL Full Run-2 combination of all channels coming soon

SM Production Cross Sections

CMS-PAS-EWK-10-012

June 2022

SM Production Cross Sections

September 2020 σ [pb] **10**⁵ Theory prediction Production Cross Section, 10 10 10 10 10⁴ 10³ EWK W, Z and 10² Vector Boson Scattering 10┢ Triple Boson ₫ Single and Diboson Ŧ **10**⁻² 10^{-3} 10^{-4} EW,Z $\gamma\gamma$,W $\gamma\gamma$: fiducial with W \rightarrow Iv, Z \rightarrow II, I=e, μ All results at: http://cern.ch/go/pNj7

Summaries of physics results

June 2022

Vector Boson Scattering

Full Run-2, 137 fb⁻¹

Same-sign W pairs

VBS signature: two jets with large rapidity separation and dijet mass

with measurement of the polarisation

 $\sigma \mathcal{B}$ (fb)

 $0.32^{+0.42}$

3.06

 1.20^{+}

2.11

Exploiting event kinetics, extract polarisation components

> first hint the scattering of at least one W_{L} at the 2.3 σ (3.1 σ exp) level

Theoretical prediction (fb)

 0.44 ± 0.05

 3.13 ± 0.35

 1.63 ± 0.18

 1.94 ± 0.21

CMS-SMP-20-006 PLB 812 (2020) 136018

June 2022

Process

 $W_{I}^{\pm}W_{I}^{\pm}$

 $W_{v}^{\pm}W_{T}^{\pm}$

 $W_{I}^{\pm}W_{V}^{\pm}$

 $W_T^{\pm}W_T^{\pm}$

CMS Status and Highlights

CMS-PAS-SMP-21-011

signal significance: 6.0σ (6.8σ exp)

Fiducial cross section:

 (19.2 ± 4.0) fb

Differential and limits on aQGC

pp → ZZ jj

Prelin

500

400F

signal significance: 4.0σ (3.5σ exp)

CMS-SMP-20-001 PLB 812 (2020) 135992

limits on **anomalous quartic** gauge couplings in terms of dim-8 EFT operators

 $\sigma_{\rm EW}(\rm pp \to ZZjj \to \ell \ell \ell' \ell' jj) = 0.33^{+0.11}_{-0.10} \,(\rm stat)^{+0.04}_{-0.03} \,(\rm syst) \,fb$

SM: $0.28 \pm 0.02 \, \text{fb}$

Recent Precision Top Mass Measurements

CMS-PAS-TOP-20-008

New top quark mass measurement in the lepton+jets mode

- profile likelihood method for the treatment of nuisances
- 5 variables m_t^{fit} , m_W^{reco} , $m_{\ell b}^{\text{reco}}$, $m_{\ell b}^{\text{reco}}/m_t^{\text{fit}}$ and R_{ba}^{reco} (all with $P_{gof} \ge 2 \text{ except } m_{\ell b}^{reco}$)
- most precise to date

also, pole mass measurement from differential cross-section of $t\bar{t}$ plus at least one jet as a function of the inverse of the $t\bar{t}$ +j system mass

CMS-PAS-TOP-21-008

June 2022

CMS Status and Highlights

CMS-PAS-TOP-21-008

Measurement of the jet mass distribution in hadronic decays of boosted top quarks

- lepton+jets channels, fat jets with $p_T > 400$ GeV
- calibration with hadronic W decays
- modelling of FSR by study of jet substructure
- differential tt x-section vs jet mass unfolded at particle level

$m(t) = 172.76 \pm 0.81$ GeV

also, charge asymmetry with boosted tops

CMS-PAS-TOP-21-014

Recent BSM Searches at CMS

Since Moriond 20022

CMS-PAS-SUS-21-007

CMS-PAS-EXO-21-003

CMS-PAS-EXO-20-006

<u>CMS-PAS-EXO-21-010</u>

CMS-PAS-EXO-20-011

CMS-PAS-B2G-21-001

CMS-PAS-B2G-21-004

<u>CMS-PAS-B2G-20-009</u>

<u>CMS-B2G-22-003</u> <u>CMS-PAS-HIG-21-001</u> <u>CMS-PAS-HIG-21-010</u> CMS-PAS-HIG-21-001

<u>CMS-PAS-HIG-21-016</u>

object tagging

processes

Search for Z' bosons decaying to pairs of heavy Majorana neutrinos

Search for a heavy composite Majorana neutrino

final state

Search for pair-produced vector-like leptons in \geq 3b + N τ final states

Search for supersymmetry in final states with a single electron or muon using angular correlations and heavy

Probing Majorana neutrinos and the Weinberg operator in the same-charge dimuon channel through vector boson fusion

- Search for resonant and non-resonant production of pairs of identical dijet resonances
- Search for Higgs boson pair production via vector boson fusion with highly Lorentz-boosted Higgs bosons in the four b quark
- Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state
- Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks
- Searches for additional Higgs bosons and vector-like leptoquarks in TT final states
- Search for a charged Higgs boson decaying into a heavy neutral Higgs boson and a W boson
- Searches for additional Higgs bosons and vector-like leptoquarks in TT final states
- Search for exotic Higgs boson decays $H \rightarrow AA \rightarrow 4\gamma$ with events containing two merged photons

Search for paired dijet resonances

CMS-PAS-EXO-21-010

Search for both resonant and non-resonant production of pairs of diet resonances

- full Run-2 dataset
- data driven background estimate

Limits with benchmark models:

- non-resonant: RPV stops
- resonant: diquarks

CMS Status and Highlights

June 2022

Two intriguing events

 m_{2i} ~2 TeV, m_{4i} ~8 TeV

More Intriguing Excesses

CMS-PAS-B2G-21-004

Search for vector-like leptons (VLLs)

- pair-produced VLLs in final states with \geq 3 b jets and up to 2 Tleptons
- in the context of 4321 model, UV-complete and relevant to describe flavor anomalies
- mild excess is seen in 1τ and 2τ : 2.8 σ

Search for additional Higgs bosons in TT final states

• two excesses for ϕ production via gluon fusion with local p-values equivalent to 3 s.d. at 100 GeV and 1.2 TeV, consistent across TT final states and data-taking years

Simultaneous Production of 3 J/ ψ Mesons

Observation of the $pp \rightarrow 3 J/\psi + X$ process

• involves double (DPS) and triple (TPS) parton scattering

CMS Status and Highlights

June 2022

Run-2, 13 TeV, 133 fb⁻¹

$$f(x) = 272^{+141}_{-104}$$
 (stat) ± 27 (syst) fk
(exp)^{+1.5}_{-1.0} (theo) mb

 $\sigma_{\rm eff}(\rm DPS)$: consistent with doublequarkonium, smaller than other double-particles

Simultaneous Production of Same-Sign W Bosons

Observation of same-sign WW production, $pp \rightarrow W^{\pm}W^{\pm} + X$

- involves double parton scattering (DPS)
- same-sign lepton pair (eµ or µµ), moderate MET and low jet multiplicity

Run-2, 13 TeV, 138 fb⁻¹

CMS Supplementary

31

Hadron Spectroscopy

<u>62 new hadrons</u> discovered (so far) at the LHC
mostly by LHCb (55)

June 2022

Hadron Spectroscopy

<u>62 new hadrons</u> discovered (so far) at the LHC

June 2022

CMS Status and Highlights

33

CT-PPS: Exclusive yy Physics with Forward Protons

June 2022

CMS Status and Highlights

collected 110 fb⁻¹

CMS-PAS-EXO-21-007

Search for high-mass exclusive diphoton events, limits on 4γ anomalous couplings and on ALP production

A Rich Program in Heavy Ion Physics

<u>CMS contributions</u> at Quark Matter 2022

<u>CMS-PAS-HIN-21-010</u>	Probing hydrodynamics and the moments of the elliptic flow distribution in $\sqrt{s_{_{ m NN}}}$ = 5.02 TeV lead-lead collisions using higher-order cumulants
CMS-PAS-HIN-21-003	Azimuthal anisotropy of nonprompt D 0 mesons in PbPb collisions at $\sqrt{s_{_{ m NN}}}$ = 5.02 TeV
<u>CMS-PAS-HIN-21-001</u>	Azimuthal anisotropy of Υ (1S) mesons in pPb collisions at $\sqrt{s_{_{ m NN}}}$ = 8.16 TeV
<u>CMS-PAS-HIN-21-011</u>	Measurement of two-particle Bose-Einstein momentum correlations and their Lévy parameters at $\sqrt{s_{_{ m NN}}}$ = 5.02 TeV PbPb collisions
<u>CMS-PAS-HIN-21-012</u>	Correlations between multiparticle cumulants and mean transverse momentum in small collision systems with the CMS detector
<u>CMS-PAS-HIN-21-007</u>	Observation of the Υ (3S) meson and sequential suppression of Υ states in PbPb collisions at $\sqrt{s_{_{\rm NN}}}=$ 5.02 TeV
CMS-PAS-HIN-21-008	Measurements of the azimuthal anisotropy of charmonia in PbPb collisions at $\sqrt{s_{_{ m NN}}}$ = 5.02 TeV
<u>CMS-PAS-HIN-21-002</u>	Azimuthal anisotropy of jet quenching in dijet events in PbPb collisions at $\sqrt{s_{_{ m NN}}}$ = 5.02 TeV
CMS-PAS-HIN-20-003	Measurements of b jet shapes in PbPb collisions at $\sqrt{s_{_{ m NN}}}$ = 5.02 TeV

June 2022

Azimuthal anisotropy of jet quenching in di-jet events

Future Performance at HL-LHC

It's only the beginning!

ATLAS and CMS released a joint <u>White Paper</u> for Snowmass with updated projections for physics performance at HL-LHC

With HL-LHC (3000 fb^{-1})

- $m_{\rm H}^{\gamma\gamma} = 125.38 \pm 0.07$ (tot) $[\pm 0.02$ (stat)] GeV
- $m_{\rm H}^{4\ell} = 125.38 \pm 0.03$ (tot) $[\pm 0.02$ (stat)] GeV
- $\Gamma_{\rm H}^{4\ell} < 0.18 \, {\rm GeV} @ 95 \,\% \, {\rm CL}$

June 2022

CMS Status and Highlights

Prospects in pp collisions at Vs = 14 TeV with the CMS detector at the HL-LHC

EWK	<u>CMS-PAS-FTR-21-001</u>	Prospects for the measurement of vector boson scattering produc leptonic same-sign WW and WZ diboson events
	<u>CMS-PAS-FTR-21-007</u>	Projection of the Higgs boson mass and on-shell width measurem $ZZ^* \rightarrow 4\ell$ decay channel
	<u>CMS-PAS-FTR-21-008</u>	A projection of the precision of the Higgs boson mass measurement in the diphoton decay channel
Н	<u>CMS-PAS-FTR-21-006</u>	Prospects for the precise measurement of the Higgs boson proper $\rightarrow \mu\mu$ decay channel
	<u>CMS-PAS-FTR-21-009</u>	Search for rare Higgs boson decays with mesons
	<u>CMS-PAS-FTR-21-002</u>	Prospects for the measurement of ttH production in the opposite- dilepton channel
	<u>CMS-PAS-FTR-21-003</u>	Prospects for HH measurements in the WWyy and ттуу fir
нн	<u>CMS-PAS-FTR-21-004</u>	Prospects for non-resonant Higgs boson pair production measurement in bbγγ final states
	<u>CMS-PAS-FTR-21-010</u>	Search for the nonresonant ttHH production in the semile decay of the top pair and the Higgs pair decay into b quar
BSM-H	<u>CMS-PAS-FTR-22-005</u>	Search for dark matter in final states with a Higgs boson to a pair of b-jets and missing transverse momentum
	CMS-PAS-FTR-22-006	Prospects for a search for doubly charged Higgs bosons
	CMS-PAS-FTR-21-005	Sensitivity projections for a search for new phenomena a dilepton mass
BSM	<u>CMS-PAS-FTR-21-011</u>	Search for leptophobic Z' resonances decaying to chargin dilepton plus missing transverse momentum final state
	<u>CMS-PAS-FTR-22-003</u>	Seesaw model searches using multilepton final states

CMS Phase-II Upgrades

Tracker

- all silicon (strips and pixels)
- higher granularity (>2B channels)
- less material
- coverage extended to $|\eta| = 4$

Barrel Calorimeters

- crystal granularity readout at 40 MHz
- precise timing for $e/\gamma > 30$ GeV
- ECAL operation at low temperature (10°)
- upgraded laser monitoring system

Endcap Calorimeter (HGCAL)

- silicon pixels (EM) and scintillators + SiPMs (HAD)
- 3D shower reconstruction with precise timing

Muon Detectors

- DTs & CSCs: new FE/BE readout electronics
- RPCs: new electronics
- new GEM/iRPC chambers
- extended muon coverage to $|\eta| = 3$

L1-Trigger

- track trigger at L1 (40 MHz)
- latency up to 12.5 µs
- triggers on displaced muons and long-lived particles

DAQ/HLT

• HLT output at 7.5 kHz

June 2022

A MIP Timing Detector (MTD)

precision timing on single charged tracks (30 to 40 ps resolution) • Barrel (BTL): LYSO crystals + SiPMs • Endcaps (ETL): Low Gain Avalanche Diodes

published last year:

DAQ/HLT

BRIL

Beam Radiation Instrumentation and Luminosity (BRIL)

- BCM/PLT refit
- new T2 tracker

Summary and Prospects

LS2 is over: CMS has successfully completed all its upgrade activities

- upgrade of the Hadron Calorimeter readout
- first Phase-II muon detector (GE1/1)
- new beam-pipe for Phase-II
- fully-refurbished pixel detector

Phase-II Upgrades

- a new schedule: LS3 shifted by 1 year and extended by 6 months (2026-2028)
- excellent progress in all projects, despite difficult times due to the global situation

CMS commissioning for Run-3

- a very successful pilot beam test in Nov 2021
- intensive cosmic ray campaign with full field
- CMS back online with improved detector, DAQ, trigger, computing, software capability

Physics

- an impressive physics harvest with the full Run-2 dataset
- many results way better than anticipated
- improved physics capabilities thanks to the deployment of advanced analysis techniques

CMS is fully ready for Run-3 and awaits the imminent return of colliding beams with great eagerness

CMS pp Data at LHC Run-2

Excellent performance of the LHC in Run-2

- max LHC luminosity (2018):
 - $\mathscr{L}_{max} = 2.14 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - (factor of 2 higher than designed 10^{34} cm⁻²s⁻¹)

- 2016-2018: **137 fb**⁻¹ of pp data "good for physics"
- data-taking efficiency > 92% (2018: 94%)
- number of pp interactions per beam crossing (PU): $\langle \mu \rangle = 34$

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

2000

3000

4000

6000

Phase-II Tracker Upgrade

- budget
- L1-trigger level

CMS Status and Highlights

June 2022

Muon Detectors

Barrel and Endcaps

• Replacement of readout electronics for the new L1 trigger conditions

Athens/Ioànnina responsible for BMT Layer-1 HW and FW

Endcaps

- Robust trigger up to $|\eta| = 2.4$ thanks to **RPC** stations RE3/1 and RE4/1 and 2-layer **GEM stations** GE1/1 and GE2/1 • Trigger extension up to $|\eta| = 2.8$
- 6-layer **GEM station** ME0

June 2022

- measurement of "local" μ direction (sensitive to p_{T})
- standalone L1-trigger rate drops by factor up to 10
- important for off-pointing muon triggers (search for LLPs)

Calorimeters

Barrel

New ECAL on-detector electronics

- digitisation at 160 MHz
- online pulse shape discrimination against spikes
- trigger granularity = single crystal
- 30 ps time resolution ($E_{\gamma} > 50$ GeV)
- cooled at 9°C to mitigate APD ageing

CMS Status and Highlights

June 2022

Endcaps: High-Granularity Calorimeter (HGCAL)

Electromagnetic (CE-E)

- Cu/CuW/Pb absorbers
- Si sensors, hexagonal modules
- 28 layers
- \bullet 25.5Xo and 1.7 λ

Hadronic (CE-H)

- steel absorbers
- High-radiation regions:
- Si sensors
- Low-radiation regions: scintillation tiles with SiPM readout
- 22 layers
- 9.5 λ (including CE-E)

6M Si channels 240k scint. channels

MIP Timing Detector

Precise timing allows for the removal of spurious tracks from PU, this improving on

- lepton isolation and identification
- jet reconstruction and flavour tagging
- missing p_T reconstruction

Precise timing also offers time-and-flight identification at low momenta (relevant in HI)

CMS Status and Highlights

June 2022

The MTD features

- a time resolution of 30-50 ps for MIPs
- a 4th dimension for PU rejection

The MTD uses well-established technologies

• Barrel:

LYSO crystals with dual end SiPM readout

- Endcaps:
 - Low Gain Avalanche Detectors (LGAD)

Evidence for $H \rightarrow \mu\mu$

Exclusive categories: ggH, VBF, VH and ttH

CMS-HIG-19-006 JHEP 01 (2021) 148

June 2022

Phys. Briefing

$\mu(\mu\mu) = 1.19^{+0.41}_{-0.39} \,(\text{stat})^{+0.17}_{-0.16} \,(\text{syst})$ Obs. (exp.) significance: 3.0 (2.5) σ

CMS Status and Highlights

Full Run-2, 137 fb⁻¹

evidence made possible thanks to the use of advanced ML techniques in the VBF analysis

W Helicity Measurements

Double-differential cross-sections in p_T^{ℓ} and η^{ℓ} ($\ell = e, \mu$) for W⁺ and W⁻

June 2022

Run-2 2016, 35.9 fb⁻¹

Photon-Induced t-Pair Production

CMS-HIN-21-009 Submitted to PRL

Observation (>5 σ) of photon-induced τ lepton pair production $\gamma\gamma \rightarrow \tau^+\tau^-$ in ultraperipheral lead-lead interactions PbPb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 404 μb^{-1} (2015) in agreement with QED predictions

CMS

∧əg 40

- 35

25 Events 20 Events

15

10

June 2022

Paves the way to the determination of the τ -lepton anomalous magnetic moment

