HEP 2022 – 39th Conference on Recent Developments in High Energy Physics and Cosmology

The CMS Trigger System

Milos Dordevic

Vinca Institute of Nuclear Sciences, University of Belgrade

on behalf of CMS collaboration

15-19 June 2022, Thessaloniki, Greece

Outline

- Brief overview of the trigger system of CMS experiment
- The CMS Trigger design, architecture & implementation
- The performance of the Level-1 Trigger system at CMS
- The performance of the CMS High Level Trigger system
- The trigger menus at CMS to select the interesting data
- HLT processing time and the GPU based acceleration
- The another approach: data scouting and data parking
- Summary and Outlook in the view of the Run-3 starting

The CMS Detector and Rates of Physics Processes

- CMS is general purpose detector at the CERN LHC
- Sub detectors to identify particles & Particle Flow
- Real time decision to store interesting events (Trigger)

Lumi: 2×10^{34} cm² s⁻¹ in the Run2 2556 bunches, 2.5x10¹¹ p/bunch Total collision rate around 2 GHz b-quark production rate 10 MHz W boson production rate 4 kHz Top quark production rate 20 Hz Higgs boson prod. rate only 1 Hz SUSY rate(m@TeV) below 0.1 Hz Interesting events at low rates!

M. Dordevic (VINS, UB)

The CMS Trigger System: Overview

- Selective read out of data by experiments in real time is performed by trigger system
- Cannot take all data (storage + processing)
 - bunches collide at 40 MHz rate at LHC
 - may generate 50 terabytes per second

- Each physics analysis starts at the trigger level
- Once event rejected by trigger it is lost forever

 more than 99.998% LHC data thrown away
 around 1.5 KHz kept from the 40 MHz rate
 - w/ full event content & prompt reconstruction
- Efficient and clean decision; Trigger universality
- Rate & Time constrains: DAQ bandwidth, buffer

The CMS Trigger System: Design

- The CMS Trigger System is organized in two tiers/levels:
 - Level-1 Trigger based on custom-made electronics to reduce the data/event rate from the crossing rate of 40 MHz to no more than 100 kHz, with 4µs latency

~1 kHz

High Level Trigger (HLT) filtering events with software running on computing farm based on commercial CPU and now also GPUs, to further reduce the event rate for storage to 1 kHz (in the Run2), now around 1.5 kHz

The Level-1 Trigger: Architecture & Implementation

- Each event analyzed by Muon and Calo trigger
- Muon trigger consists of three muon detection systems used early in the processing chain of the trigger, in order to improve the efficiency and resolution, but also to reduce trigger rate
- Calorimeter trigger for reconstructing electrons, photons, tau candidates, jets and energy sums
- No tracking readout used (planned for Phase 2)
- **Global trigger** that combines the various objects that are formed by the µGMT and caloL2 triggers
- Set of requirements on trigger objects: L1 menu
 around 400 requirements in a logical OR

The Level-1 Trigger: Algorithms

- Electrons and photons are reconstructed using cluster shape and electromagnetic(EM) fraction to discriminate against jets
- Jets reconstructed using sliding window algorithm that looks for trigger tower seeds with an energy over given threshold;
 9x9 trigger towers are summed to match offline jets (R = 0.4) after which the jets are also pileup subtracted and calibrated

- Energy sums are calculated by summing the jet energies with restrictions to jet energy and to pseudorapidity (for the H_T); for MET: all TTs over $E_T(\eta, PU)$ summed (in full η)
- Muons reconstruction using an extrapolation based track finding in barrel, pattern based in overlap/endcap region
 - $\,\circ\,\,$ muon p_T assignment based on $\Delta\varphi$ in barrel, patterns in overlap region and BDT regression used in endcap

ECAL

HCAL

Isolation region

• 0

Seed tower

First neighbours

Second neighbours

The Level-1 Trigger Performance: muons

JINST 15, P10017 (2020

- L1 muon efficiency as function of $p_T^{\mu, \text{ offline}}$ \circ sharper in barrel due to better resolution $\frac{3}{2}_{0.8}$
- Efficiency vs $\eta^{\mu, \text{ offline}}$ falls in forward region
 - $\circ \quad \mbox{due to only CSCs used in EMTF (i.e. no detector redundancy) and p_T assignment more difficult due to reduced lever arm (and more showering)$
 - \circ improve with GEM detector added for the Run3

- Level-1 efficiency of the muon track finder flat vs number of offline vertices (left plot) and also flat vs φ distribution of the muon
 - higher in detector layers overlap region

M. Dordevic (VINS, UB)

The Level-1 Trigger Performance: ele, pho, tau

JINST 15, P10017 (2020

The Level-1 Trigger Performance: jet, HT & MET

 The efficiency for scalar sum of jet energy with E_T ≥ 30 GeV (left) and missing transverse energy

(right) for the various thresholds

• The efficiency curves for the Level-1 jet triggers for the barrel plus endcap pseudorapidity range

 $_{\odot}$ for the thresholds of 35, 90, 120 and 180 GeV

The Level-1 Trigger: Dedicated Analysis Triggers

- JINST 15, P10017 (2020
- Vector Boson Fusion (VBF) dijet trigger with invariant mass cut: CMS 27.0 fb⁻¹ (13 TeV) Efficiency required at least two jets with $E_T > 115$ and 35 GeV and to Ο 08 have at least one pair of jets with each having $E_{T} > 35$ GeV 🕂 Data 0.6 and also dijet invariant mass to be greater then 620 GeV At least 1 online (offline) jet with $E_{\tau} \ge 115$ (150) GeV 4.2 fb⁻¹ (13 TeV) CMS At least 2 online (offline) jets , ^{0.} 0.4 with $E_{\tau} \ge 40$ (60) GeV Offline muons and m[']_{ii} ≥ 620 GeV . ເບັ 0.18 L1 not extrapolated to vertex Examples of the possibilities L1 extrapolated to vertex 0.16 0.2 0.14 with Level - 1 Global Trigger 0.12 300 400 500 600 700 800 900 1000 1100 1200 1300 0.1 Offline m_{ii} [GeV] 0.08 Low mass di-muon triggers with invariant mass cut (e.g. B trigger): 0.06
 - $\circ~$ apply lower p_T thresholds with the dimuon invariant mass cut
 - $\circ~\mu\,p_T$ extrapolated to vertex for mass calc. from a standalone μ

6

8

10 12 14

16

18 20

 $m_{\mu\mu}$ [GeV]

0.04

0.02

The Level-1 Muon Trigger: Run 3 improvements

- Kalman filter for muon tracking incorporated into FPGA logic of barrel muon trigger, allowing the possibility to trigger on Long Lived Particles with transverse displacement up to ~1m
 - tested with data obtained from cosmic muon interactions

- https://indico.cern.ch/event/998052/
 - Neural network for measuring displaced muons in

endcap ported to the FPGA logic of endcap trigger

- $\circ~$ extends possibility to trigger on LLP in endcap
- (Phase-2) GEM detector innermost disk was added
 - \circ to improve efficiency in fwd region 1.6 < η < 2.1

The High Level Trigger: Overview

- High Level Trigger is set to reduce the event rate from 100 kHz to ~1(1.5) kHz in LHC Run 2(3)
 - $\circ~$ the output rate from offline computing data processing constrains and storage capacities
 - o uses offline reconstruction algorithms and code, but optimized so it's around 100x faster
 - \circ total 30,000 CPU cores used in the High Level Trigger system at the end of the LHC Run 2
 - hundreds of HLT paths constructed, targeting the broadest range of the event topologies

The High Level Trigger: Tracking

CMS-DP-2018-038

- Tracking at HLT simplified from the offline
 - \circ reduced # iterations (10 in the offline)
 - regional tracking (eg. at high deposits)
 - after all iter. close to perfect detector!

efficient for low pT tracks (to 0.4 GeV)

- Tracking fake rate largest in forward region
- Also fake rate grows at the low and high $\ensuremath{p_{\text{T}}}$
- Not much increase with doublet recovery iteration

M. Dordevic (VINS, UB)

The High Level Trigger: B-Tagging

CMS-DP-2019-042

• Neural network based classifier (Deep CSV) used since 2017 to identify the b-tagged AK4 jets

Online and offline b-jet identification efficiency
 Improved b-tagging efficiency over previous CSV algorithms 5-15% for fixed light flavor efficiency

• The <u>DeepCSV</u> discriminator distribution for online (PF-Jets)-> different colors show the contributions in simulations from different jet flavors

The HLT Performance: Electrons and Photons

- Efficiency of HLT_Ele32_WPTight_Gsf with respect to offline candidates for different η
- Efficiency of HLT path that requires a photon with p_T > 200 GeV (used in SUSY, also others)

• Efficiency w.r.t probe electron transverse energy of the seeded (left) and unseeded (right) leg of the di-photon trigger for 4 analysis categories, defined w.r.t probe R9 (E_{5x5}/E_{SC}) and η , measured on data

for Z->ee events using the tag-and-probe method

CMS DP-2018/049

The HLT Performance: Jets, Muons and Taus

CMS DP-2018/034 CMS DP-2019/012 CMS DP-2018/037

- Efficiency of jet triggers w.r.t offline candidates in |η|< 2.4
- Efficiency of trigger requiring iso single μ with p_T > 24 GeV

- The efficiency of a hadronic tau leg of the mu-tau trigger shown as a function of offline tau pT for the 17.7 fb⁻¹ data taken with the cone-based tau reconstruction and for 42.0 fb⁻¹ data collected with the HPS-based algorithm in 2018
- The combined L1 and HLT efficiency of the $\tau_{had}\text{-leg}$ shown

M. Dordevic (VINS, UB)

18

The Trigger Menus: How to Select Your Data

- **Trigger menu** represents a large set of selection criteria enabling to fulfill broad physics program
- General triggers, some very specific and backup
- Separate L1 / HLT menus with ~ 300 / 600 items
- Level-1 menu: single/multi/cross path fractions

- HLT rates distribution by physics groups
 - o measured at 1.2e34, scaled to 2e34
 - \circ total, shared and pure rates shown
- The pie chart also displays rate allocated

to each physics group for a lumi of 2e34

The CMS Detector Phase-I Upgrade

CMS DETECTOR LS2 UPGRADES

- Significant upgrades of the CMS detector during the course of Run 2 and in the LS2
- Level-1 Trigger upgrades:
 - Phase-I L1 trigger upgrade <u>CMS-TDR-12</u> in 2016: finer calorimeter granularity --> improved energy and position resolution while remaining within rate constraints
 - Pileup subtraction in Run-2 at benefit of L1 performance <u>JINST 15 (2020) P10017</u>
- High Level Trigger upgrades:
 - Phase-I Pixel Upgrade <u>CMS-TDR-11</u> during the LHC EYETS in 2016-2017
 - Phase-I HCAL Upgrade <u>CMS-TDR-10</u>
 - Endcap included in 2018 (not used in trigger); Barrel completed in 2019

https://home.cern/press/2022/CMS-upgrades-LS2

- Starting to use a heterogeneous architecture in online reconstruction, based on CPU and GPU
 - o pixel and pixel based tracking, ECAL & HCAL local reco have already been ported to GPUs
 - 25% CPU time offload to GPU
- Planned to port more reco
 code (like Particle Flow) to
 the GPU in the near future
- GPU reco much faster and will allow tracking on more events, improving scouting
 - at Level 1 for low masses

The timing is measured on pileup 50 events from <u>Run2018D</u> running 4 jobs in parallel, with 32 threads each, on a full node (2× AMD "Rome" 7502) with SMT enabled.

PhaseIIHLTRecoAndGPUPerformance

CMS DP-2021/013

The CMS Trigger System in LHC Run 3: Tracking at HLT

CMS DP-2022/014

The CMS Trigger System in LHC Run 3: Parking & Scouting CMS-DP-2019-043

- The CMS Trigger System is robust, flexible and proven in Run 1 and Run 2
 - o able to deal with large number of events to fulfill the CMS physics goals
- Excellent performance in Run2: sharp turn-ons, small pileup dependence
- Integrated new technologies (LS2), improved/inovated trigger algorithms
- Additional improvements for the Run3, eg heterogeneous reconstruction comprising on CPU and GPU; further non-conventional triggers (like LLPs)
- Run 3 is starting right now -> new data (& exciting physics) around the corner!

BACKUP SLIDES

The Level-1 Trigger Performance: muons

The Level-1 Trigger Performance: ele, pho, tau

The Level-1 Trigger Performance: jet, HT & MET

The High Level Trigger: Tracking

CMS-DP-2018-038

The High Level Trigger: B-Tagging

CMS-DP-2019-042

CMS DP-2020/016

CMS DP-2018/049 CMS DP-2018/039

The HLT Performance: Jets, Muons and Taus

CMS DP-2018/034 CMS DP-2019/012 CMS DP-2018/037

The Trigger Menus: How to Select Your Data

JINST 15, P10017 (2020) CMS DP-2018/057

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Algorithm	Requirements ($p_{\rm T}$, $E_{\rm T}$, $m_{\mu\mu}$, and $m_{\rm jj}$ in GeV)	Algorithm	Requirements
$ \begin{aligned} & \text{Single } \mu & p_7 > 15.5 \text{ K Medium quality} \\ & \text{Double } \mu & p_7 > 15.5 \text{ K Medium quality} \\ & \text{Double } \mu & p_7 > 15.5 \text{ K Right quality} \\ & \text{Double } \mu & p_7 > 15.5 \text{ K Right quality} \\ & \text{Double } \mu & \text{mass} & p_7 > 45 \text{ K Hight quality} \\ & \text{Double } \mu & \text{mass} & p_7 > 45 \text{ K Hight quality} \\ & \text{Double } \mu & \text{mass} & p_7 > 45 \text{ K Hight quality} \\ & \text{Double } \mu & \text{mass} & p_7 > 45 \text{ K Hight quality} \\ & \text{Double } \mu & \text{mass} & p_7 > 45 \text{ K Hight quality} \\ & \text{Double } \mu & \text{mass} & p_7 > 45 \text{ K Hight quality} \\ & \text{Fr > 06 } \text{H} < 1.5 \text{ K Hight quality} \\ & \text{Sock } \Delta R < 1.2 \\ & \text{Double } \mu & \text{KR} \\ & \text{Fr > 06 } \text{K Hight quality} \\ & \text{Fr > 06 } \text{K} < 1.4 \text{ K Medium quality} \\ & \text{Kondum quality} \\ & \text{Kondum quality} \\ & \text{Kondum quality} \\ & \text{Triple } \mu \\ $	Muons		8	$(n_{\rm T}, E_{\rm T}, m_{\rm He})$ and $m_{\rm H}$ in GeV)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Single μ	$p_{\rm T} > 22 \&$ light quality	<u> </u>	$(p_1, L_1, m_{\mu\mu}, and m_{\mu})$ in $\Theta(v)$
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Double μ	$p_{\rm T} > 15.7$ & Medium quality	Two objects	
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Double μ	$p_{\rm T} > 13.5$ & Fight quality $p_{\rm T} > 8.8$ & Tight quality	Single μ + Single e/ γ	$p_{\rm T}(\mu) > 20$ & Tight quality(μ) & $p_{\rm T}({ m e}/\gamma) > 10$ & $ \eta({ m e}/\gamma) < 2.5$
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	Double μ + mass	$p_{\rm T} > 4.5 \& \eta < 2.0 \& \text{ Tight quality } & \text{OS } \& m_{uu} > 7$	Single μ + Single e/ γ	$p_{\rm T}(\mu) > 7$ & Tight quality(μ) & $p_{\rm T}({\rm e}/\gamma) > 20$ & $ \eta({\rm e}/\gamma) < 2.5$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Double $\mu + \Delta R$	$p_{\rm T} > 4$ & Tight quality & OS & $\Delta R < 1.2$	Single u +	$n_{\rm T}(u) > 18 \& n(u) < 2.1 \& {\rm Tight cuality}(u) \&$
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Double $\mu + \Delta R$	$p_{ m T} > 0$ & $ \eta < 1.5$ & Tight quality & OS & $\Delta R < 1.4$	Single 7	$p_1(\mu) > 10 \approx \eta(\mu) < 21$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Double μ + BX	$p_{\rm T} > 0$ & $ \eta < 1.4$ & Medium quality & Non-colliding BX		$p_{\rm T}(t) > 24 \ll \eta(t) < 2.1$
$ \begin{array}{ll} \text{friple } \mu & \text{mass} \\ \text{friple } \mu & \text{friple } \mu$	Triple μ	$p_{\rm T} > 5,3,3$ & Medium quality	Single $\mu + H_{\rm T}$	$p_{\rm T}(\mu) > 6$ & Tight quality(μ) & $H_{\rm T} > 240$
$ \begin{array}{ll} \text{Index} & \text{Three} \mu + \text{mass} & \text{Three} \mu + \mu $	Triple μ	$p_T > 5, 5, 5 \propto \text{ fight quality}$ $n_T > 5, 35, 2.5 \text{ fr Med qual: two \mu OS fr n_T > 5, 2.5 \text{ fr } 5 < m_{-} < 17$	Single e/ γ +	$p_{\rm T}({ m e}/\gamma)>22$ & $ \eta({ m e}/\gamma) <2.1$ & Loose isolated(e/ γ) &
$ \begin{array}{lll} Electrons / photons & (e/\gamma) & 1 \\ Single e/\gamma & p_T > 36 & \eta < 2.5 \\ Single e/\gamma & p_T > 36 & \eta < 2.5 \\ Single e/\gamma & p_T > 36 & \eta < 2.5 \\ Single e/\gamma & p_T > 36 & \eta < 2.5 \\ Single e/\gamma & p_T > 25, 12 & \eta < 2.5 & Loose isolation \\ Double e/\gamma & p_T > 25, 12 & \eta < 2.5 & Loose isolation \\ Double e/\gamma & p_T > 25, 12 & \eta < 2.5 & Loose isolation \\ Triple e/\gamma & p_T > 18, 17, 8 & \eta < 2.5 \\ Triple e/\gamma & p_T > 16, 16, 16 & \eta < 2.5 \\ Triple e/\gamma & p_T > 120 & \eta < 2.1 & Loose isolation \\ Single i & p_T > 120 & \eta < 2.1 & Loose isolation \\ Single i & p_T > 120 & \eta < 2.1 & Loose isolation \\ Single i & p_T > 120 & \eta < 2.1 & Loose isolation \\ Single i & p_T > 120 & \eta < 2.1 & Loose isolation \\ Single i & p_T > 120 & \eta < 2.1 & Loose isolation \\ Single i & p_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.1 & Loose isolation \\ P_T > 120 & \eta < 2.5 & Loose isolation \\ P_T > 150 & \eta < 2.5 & Loose isolation \\ P_T > 150 & \eta < 2.5 & Loose isolation \\ P_T > 150 & \eta < 2.5 & Loose isolation \\ P_T > 150 & \eta < 2.5 & Loose isolation \\ P_T > 112 & \eta & 1 < 2.3 & \Delta \eta < 1.6 \\ Double jet + mass & p_T > 112 & \eta & 2 & 2.3 & \Delta \eta < 1.6 \\ Double jet + mass & p_T > 30 & \eta < 2.5 & \Delta \eta < 1.5 & m_{II} > 300 \\ Triple jet & p_T > 9 & 5, 75, 65 & \eta < 2.5 \\ Double jet + mass & p_T > 30 & \eta < 2.5 & \Delta \eta < 1.5 & m_{II} > 300 \\ Triple jet & p_T > 9 & 5, 75, 65 & \eta < 2.5 \\ Double jet + AR & p_T (jet) > 90 & \eta(jet) < 2.5 & \Delta R(\mu, pt) < 0.8 \\ Double \mu + Single e$	Triple μ + mass	Three u any gual.; two $u \& v_T > 5.3 \&$ Tight gual. $\& OS \& m_{uu} < 9$	Single τ	$p_{\rm T}(\tau) > 26 \& \eta(\tau) < 2.1 \& \text{Isolated}(\tau) \& \Delta R > 0.3$
$ \begin{array}{lll} \operatorname{Single} e/\gamma & \operatorname{pr} > 60 \\ \operatorname{Single} e/\gamma & \operatorname{pr} > 36 \& \eta < 2.5 \\ \operatorname{Single} e/\gamma & \operatorname{pr} > 36 \& \eta < 2.5 & \operatorname{Losse} \operatorname{isolation} \\ \operatorname{Double} e/\gamma & \operatorname{pr} > 28 \& \eta < 2.5 & \operatorname{Losse} \operatorname{isolation} \\ \operatorname{Double} e/\gamma & \operatorname{pr} > 25, 12 \& \eta < 2.5 & \operatorname{Losse} \operatorname{isolation} \\ \operatorname{Double} e/\gamma & \operatorname{pr} > 22, 12 \& \eta < 2.5 & \operatorname{Losse} \operatorname{isolation} \\ \operatorname{Double} e/\gamma & \operatorname{pr} > 22, 12 \& \eta < 2.5 & \operatorname{Losse} \operatorname{isolation} \\ \operatorname{Double} e/\gamma & \operatorname{pr} > 22, 12 \& \eta < 2.5 & \operatorname{Losse} \operatorname{isolation} \\ \operatorname{Triple} e/\gamma & \operatorname{pr} > 16, 16, 16 \& \eta < 2.5 & \operatorname{Losse} \operatorname{isolation} \\ \operatorname{Triple} e/\gamma & \operatorname{pr} > 16, 16, 16 \& \eta < 2.5 & \operatorname{Losse} \operatorname{isolation} \\ \operatorname{Single} \tau & \operatorname{pr} > 120 \& \eta < 2.1 & \operatorname{Isolation} \\ \operatorname{Single} \tau & \operatorname{pr} > 120 \& \eta < 2.1 & \operatorname{Isolation} \\ \operatorname{Double} \tau & \operatorname{pr} > 32 \& \eta < 2.1 & \operatorname{Isolation} \\ \operatorname{Intero objects} \\ \operatorname{Single} \tau & \operatorname{pr} > 32 \& \eta < 2.1 & \operatorname{Isolation} \\ \operatorname{Intero objects} \\ \operatorname{Single} \tau & \operatorname{pr} > 32 \& \eta < 2.1 & \operatorname{Isolation} \\ \operatorname{Intero objects} \\ \operatorname{Single} \tau & \operatorname{pr} > 32 \& \eta < 2.1 & \operatorname{Isolation} \\ \operatorname{Iets} \\ \operatorname{Single} \tau & \operatorname{pr} > 32 \& \eta < 2.5 & \operatorname{Non-colliding} BX \\ \operatorname{Single} \tau & \operatorname{pr} > 33 \& \eta < 2.5 & \operatorname{Non-colliding} BX \\ \operatorname{Single} \tau & \operatorname{pr} > 150 \& \eta < 2.5 & \operatorname{Non-colliding} BX \\ \operatorname{Double} \tau & \operatorname{pr} > 33 \& \eta < 2.5 & \operatorname{Non-colliding} BX \\ \operatorname{Double} \tau & \operatorname{pr} > 30 \& \eta < 2.5 & \operatorname{Non-colliding} BX \\ \operatorname{Double} \tau & \operatorname{pr} > 30 \& \eta < 2.5 & \operatorname{Non-colliding} BX \\ \operatorname{Double} \tau & \operatorname{pr} > 30 \& \eta < 2.5 & \operatorname{Non-colliding} BX \\ \operatorname{Double} \tau & \operatorname{pr} > 112 \& \eta < 2.3 & \operatorname{A} \eta < 1.6 \\ \operatorname{Double} \tau & \operatorname{pr} > 30 \& \eta < 2.5 & \operatorname{A} \eta < 1.5 & \operatorname{m} = 300 \\ \operatorname{Double} \tau & \operatorname{pr} > 30 \& \eta < 2.5 & \operatorname{A} \eta < 1.5 & \operatorname{m} = 300 \\ \operatorname{Double} \tau & \operatorname{pr} > 30 \& \eta < 2.5 & \operatorname{A} \eta < 1.5 & \operatorname{m} = 300 \\ \operatorname{Double} \tau & \operatorname{pr} > 90 & \operatorname{Non-colliding} \eta > 00 \\ \operatorname{Double} \tau & \operatorname{pr} > 90 & \operatorname{Non-colliding} \eta > 00 \\ \operatorname{Nouble} \tau & \operatorname{pr} > 90 & \operatorname{Non-colliding} \eta > 00 \\ \operatorname{Nouble} \tau & \operatorname{pr} > 90 & \operatorname{Non-colliding} \eta > 00 \\ \operatorname{Nouble} \tau & \operatorname{pr} > 0 & \operatorname{Non-colliding} \eta > 00 \\ \operatorname{Nouble} \tau & \operatorname{pr} > 30 & \operatorname{Non-colliding} \eta > 00 \\ \operatorname{Nouble} \tau & p$	Electrons / photons	(e/γ)	Single $e/\gamma +$	$n_{\rm T}(e/\gamma) > 28 {\rm dr} \left n(e/\gamma) \right < 2.1 {\rm dr} {\rm I}$ once isolated (e/\gamma) dr
$ \begin{array}{lll} \text{Single } e/\gamma & p_{\mathrm{T}} > 36 \& \eta < 2.5 \\ \text{Single } e/\gamma & p_{\mathrm{T}} > 25 \& \eta < 2.5 \& \text{Lose isolation} \\ \text{Double } e/\gamma & p_{\mathrm{T}} > 25, 12 \& \eta < 2.5 \& \text{Lose isolation} \\ \text{Triple } e/\gamma & p_{\mathrm{T}} > 25, 12 \& \eta < 2.5 \& \text{Lose isolation} \\ \text{Triple } e/\gamma & p_{\mathrm{T}} > 22, 12 \& \eta < 2.5 \& \text{Lose isolation} \\ \text{Triple } e/\gamma & p_{\mathrm{T}} > 10, 16, 16 \& \eta < 2.5 \& \text{Lose isolation} \\ \text{Triple } e/\gamma & p_{\mathrm{T}} > 10, 16, 16 \& \eta < 2.5 & \text{Lose isolation} \\ \text{Triple } e/\gamma & p_{\mathrm{T}} > 10, 16, 16 \& \eta < 2.5 & \text{Lose isolation} \\ \text{Triple } e/\gamma & p_{\mathrm{T}} > 10, 16, 16 \& \eta < 2.5 & \text{Lose isolation} \\ \text{Single } \tau & p_{\mathrm{T}} > 10, 16, 16 \& \eta < 2.5 & \text{Lose isolation} \\ \text{Single } \tau & p_{\mathrm{T}} > 120 \& \eta < 2.1 & \text{Lose isolated} (e/\gamma) \& H_{\mathrm{T}} > 100 \\ \text{Double } \tau & p_{\mathrm{T}} > 32 \& \eta < 2.1 & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h(\mu) & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) \otimes h(\mu) & \text{Lose isolated} (h(\mu) \otimes h(\mu) \otimes h$	Single e/γ	$p_{\mathrm{T}} > 60$	Single ey y i	$p_1(e, \gamma) > 20 \approx \eta(e, \gamma) < 2.1 \approx 10000 \text{ (bold (eq. (7))} \approx 10000 \text{ (bold (eq. (7))} \approx 10000 \text{ (bold (eq. (7))})$
$\begin{aligned} & \text{Single } e/\gamma & p_T > 28 \ \eta < 2.5 \ \& \text{Loose isolation} & \text{Single } e/\gamma + H_T & p_T(e/\gamma) > 26 \ \& \eta(e/\gamma) < 2.1 \ \& \text{Loose isolated}(e/\gamma) \ \& H_T > 100 \\ & \text{Double } e/\gamma & p_T > 22, 12 \ \& \eta < 2.5 \ \& \text{Loose isolation} & \text{Single } \tau + E_T^{\text{miss}} & p_T(\tau) > 40 \ \& \eta(\tau) < 2.1 \ \& E_T^{\text{miss}} > 90 \\ & \text{Single } \tau + E_T^{\text{miss}} & p_T(\tau) > 40 \ \& \eta(\tau) < 2.5 \ \& E_T^{\text{miss}} > 80 \\ & \text{Triple } e/\gamma & p_T > 16, 16 \ \& \eta < 2.5 \\ & \text{Single } \tau & p_T > 10, 61 \ \& \eta < 2.5 \\ & \text{Single } \tau & p_T > 120 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.1 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.5 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.5 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.5 \\ & \text{Solution} & p_T > 32 \ \& \eta < 2.5 \ \& A\eta < 1.6 \\ & \text{Solution} & p_T > 30 \ \& \eta < 2.5 \ \& A\eta < 1.5 \ \& \eta_{\eta } > 300 \\ & \text{Solution} & p_T > 30 \ \& \eta < 2.5 \ \& A\eta < 1.5 \ \& \eta_{\eta } < 2.5 \\ & \text{Solution} & p_T > 30 \ \& \eta < 2.5 \ \& A\eta < 1.5 \ \& \eta_{\eta } < 2.5 \\ & \text{Solution} & p_T > 30 \ \& \eta < 2.5 \ \& A\eta < 1.5 \ \& \eta_{\eta } < 2.5 \\ & \text{Solution} & p_T > 30 \ \& \eta < 2.5 \ \& A\eta < 1.5 \ \& \eta_{\eta } < 2.5 \\ & \text{Solution} & p_T > 30 \ \& \ \mu < 2.5 \ \& A\eta < 1.5 \ \& \ \eta < 2.5 \\ & \text{Solution} & p_T > 30 \ \& \ \mu < 2.5 \ \& A\eta < 1.5 \ \& \ \eta < 2.5 \\ & \text{Solution} & p_T > 30 \ \& \ \mu < 2.5 \ \& A\eta < 1.5$	Single e/γ	$p_{ m T}>36~\&~ \eta <2.5$	Single jet	$p_{\rm T}({\rm jet}) > 34 \& \eta({\rm jet}) < 2.5 \& \Delta K > 0.3$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Single e/γ	$p_{\rm T} > 28 \& \eta < 2.5 \&$ Loose isolation	Single e/ γ + $H_{\rm T}$	$p_{\rm T}({\rm e}/\gamma) > 26 \& \eta({\rm e}/\gamma) < 2.1 \& \text{Loose isolated}({\rm e}/\gamma) \& H_{\rm T} > 100$
$\begin{aligned} & \text{Double } p_T \neq p_T \neq 2.2 \text{ (} p_T \neq 2.5 \text{ (} p_T \neq 2$	Double e/γ	$p_{\rm T} > 23, 12 \& \eta < 2.5$	Single τ + $E_{\rm T}^{\rm miss}$	$p_{ m T}(au) > 40$ & $ \eta(au) < 2.1$ & $E_{ m T}^{ m miss} > 90$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Triple e/γ	$p_{\rm T} > 22,12 \ll \eta < 2.5 \ll 10080$ isolation $p_{\rm T} > 18,17,8 \& \eta < 2.5$	Single jet + E_{T}^{miss}	$p_{\rm T}({\rm iet}) > 140 \& n({\rm iet}) < 2.5 \& E_{\rm T}^{\rm miss} > 80$
$\begin{array}{lll} Tau \ leptons (\tau) \\ Single \ \tau \\ p_{T} > 120 \ \& \eta < 2.1 \\ Double \ \tau \\ p_{T} > 32 \ \& \eta < 2.1 \\ Single \ \mu \\ fets \\ Single \ jet \\ p_{T} > 180 \\ Single \ jet \\ p_{T} > 180 \\ Single \ jet \\ p_{T} > 180 \\ Single \ jet \\ p_{T} > 150 \ \& \eta < 2.5 \\ Non-colliding BX \\ Double \ jet \\ p_{T} > 150 \ \& \eta < 2.5 \\ Non-colliding BX \\ Double \ jet \\ p_{T} > 112 \ \& \eta < 2.3 \ \& \Delta\eta < 1.6 \\ Double \ jet \\ p_{T} > 112 \ \& \eta < 2.3 \ \& \Delta\eta < 1.6 \\ Double \ jet \\ p_{T} > 115 \ 35; two \ jets \ p_{T} > 35 \ \& \ m_{j} > 620 \\ Double \ jet \\ p_{T} > 95, 75, 65; two \ jets \ p_{T} > 75, 65 \ \& \eta < 2.5 \\ Energy \ sums \end{array}$	Triple e/γ	$p_{\rm T} > 16, 16, 16 \& \eta < 2.5$	Three objects	
$ \begin{array}{lll} Single \ \tau & p_{T} > 120 \ \& \eta < 2.1 \\ Double \ \tau & p_{T} > 32 \ \& \eta < 2.1 \ \& Iight quality(\mu) \ \& \\ \\ Double \ \tau & p_{T} > 32 \ \& \eta < 2.1 \ \& Iight quality(\mu) \ \& \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Tau leptons (τ)			
$ \begin{array}{lll} \text{Double } \tau & p_{\mathrm{T}} > 32 \& \eta < 2.1 \& \text{Isolation} \\ \hline \text{lets} \\ \text{Single jet} & p_{\mathrm{T}} > 180 \\ \text{Single jet + BX} & p_{\mathrm{T}} > 43 \& \eta < 2.5 \& \text{Non-colliding BX} \\ \text{Double jet + mass} & p_{\mathrm{T}} > 150 \& \eta < 2.5 \\ \text{Double jet + mass} & p_{\mathrm{T}} > 112 \& \eta < 2.3 \& \Delta\eta < 1.6 \\ \text{Double jet + mass} & p_{\mathrm{T}} > 115, 35; \text{ two jets } p_{\mathrm{T}} > 35 \& m_{\mathrm{j}} > 620 \\ \text{Double jet + mass} & p_{\mathrm{T}} > 30 \& \eta < 2.5 \& \Delta\eta < 1.5 \& m_{\mathrm{j}} > 300 \\ \text{Triple jet} & p_{\mathrm{T}} > 95, 75, 65; \text{ two jets } p_{\mathrm{T}} > 75, 65 \& \eta < 2.5 \\ \text{Energy sums} \end{array} $	Single $ au$	$p_{ m T}>120$ & $ \eta <2.1$	Single μ	$p_{\rm T}(\mu) > 12 \& \eta(\mu) < 2.3 \& \text{ light quality}(\mu) \&$
$\begin{array}{ll} p_{T} \\ p_{T} > 180 \\ p_{T} > 180 \\ p_{T} > 133 \& \eta < 2.5 \& \text{Non-colliding BX} \\ p_{T} > 150 \& \eta < 2.5 & \text{Non-colliding BX} \\ p_{T} > 150 \& \eta < 2.5 & \text{Non-colliding BX} \\ p_{T} > 150 \& \eta < 2.5 & \text{Non-colliding BX} \\ p_{T} > 112 \& \eta < 2.3 \& \Delta \eta < 1.6 \\ p_{T} > 112 \& \eta < 2.3 \& \Delta \eta < 1.6 \\ p_{T} > 115, 35; \text{ two jets } p_{T} > 35 \& m_{jj} > 620 \\ p_{T} > 115, 35; \text{ two jets } p_{T} > 35 \& \Delta \eta < 1.5 \& m_{jj} > 300 \\ p_{T} > 112 \& \eta < 2.5 \& \Delta \eta < 1.5 \& m_{jj} > 300 \\ p_{T} > 95, 75, 65; \text{ two jets } p_{T} > 75, 65 \& \eta < 2.5 \\ energy sums \end{array}$ $\begin{array}{l} \text{Single } \mu + & p_{T}(\mu) > 3 \& \eta(\mu) < 1.5 \& \text{Tight quality } (\mu) \& \\ p_{T}(\mu) > 3 \& \text{Tight quality } (\mu) \& H_{T} > 220 \\ p_{T}(\mu) > 0 \& \text{Medium quality } (\mu) \& \Delta R(\mu, \mu) < 1.6 \& \\ p_{T}(\mu) > 0 \& \text{Medium quality } (\mu) \& \Delta R(\mu, \mu) < 1.6 \& \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5 \\ p_{T}(\mu) > 5 \& \text{Tight quality } (\mu) \& p_{T}(e/\gamma) > 0 \& \ \eta(e/\gamma)\ < 2.5 \\ p_{T}(\mu) > 5 \& \ \eta(e/\gamma)\ < 2.5 \& \ \eta(e/\gamma)\ < 2.5 \\ p_{T}(\mu) > 0 \& \ \eta(e/\gamma)\ < 2.5 \& \ \eta(e/\gamma)\ < 2.5 \\ p_{T}(\mu) > 0 \& \ \eta(e/\gamma)\ < 0 \& \ \eta(e/$	Double τ	$p_{ m T}>32$ & $ \eta <2.1$ & Isolation	Double jet + ΔR	$p_{\rm T}({ m jet}) > 40 \& \Delta \eta({ m jet},{ m jet}) < 1.6 \& \eta({ m jet}) < 2.3 \& \Delta R(\mu,{ m jet}) < 0.4$
Single jet $p_T > 160$ Single jet $p_T > 160$ Single jet $p_T > 160$ Single jet $p_T > 160$ Double jet $p_T > 150 \& \eta < 2.5 \& Non-colliding BX$ Double jet $p_T > 150 \& \eta < 2.5 \& Non-colliding BX$ Double jet $p_T > 150 \& \eta < 2.5 \& Non-colliding BX$ Double jet $p_T > 150 \& \eta < 2.5 \& \Delta \eta < 1.6$ Double jet $p_T > 112 \& \eta < 2.3 \& \Delta \eta < 1.6$ Double jet $p_T > 112 \& \eta < 2.3 \& \Delta \eta < 1.6$ Double jet $p_T > 115, 35; two jets p_T > 35 \& m_{ij} > 620Double jet p_T > 30 \& \eta < 2.5 \& \Delta \eta < 1.5 \& m_{ij} > 300Triple jet p_T > 95, 75, 65; two jets p_T > 75, 65 \& \eta < 2.5Energy sumsEnergy sumsEnergy sumsSingle jet p_T < 100 \& \eta(jet) < 2.5 \& E_T^{miss} > 40Double \mu + H_TDouble \mu + M_TDouble \mu + M_T$	Jets Single ist	n > 190	Single μ +	$p_{\rm T}(\mu) > 3 \& \eta(\mu) < 1.5 \&$ Tight quality (μ) &
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Single jet + BX	$p_{\rm T} > 100$ $n_{\rm T} > 43 \text{k} n < 2.5 \text{k}$ Non-colliding BX	Single jet + E_{π}^{miss}	$\eta_{\rm T}({\rm iet}) > 100 \& n({\rm iet}) < 2.5 \& E_{\rm T}^{\rm miss} > 40$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Double jet	$p_{\rm T} > 150 \& \eta < 2.5$	Double $u + H_{-}$	$n_{-}(u) > 2$ for Tright quality (u) for $H_{-} > 220$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Double jet + $\Delta \eta$	$p_{ m T} > 112 \ \& \ \eta < 2.3 \ \& \ \Delta \eta < 1.6$	Double $\mu + m_{\rm T}$	$p_{\rm T}(\mu) > 3 \approx \text{Hight quality}(\mu) \approx 11_{\rm T} > 220$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Double jet + mass	$p_{\rm T} > 115, 35$; two jets $p_{\rm T} > 35$ & $m_{\rm jj} > 620$	Double μ +	$p_{\rm T}(\mu) > 0$ & Medium quality(μ) & $\Delta R(\mu, \mu) < 1.6$ &
Triple jet $p_{\rm T} > 95, 75, 65;$ two jets $p_{\rm T} > 75, 65 \& \eta < 2.5$ Energy sums Double μ + Single e/γ $p_{\rm T}(\mu) > 5 \&$ Tight quality $(\mu) \& p_{\rm T}(e/\gamma) > 9 \& \eta(e/\gamma) < 2.5$	Double jet + mass	$p_{\rm T} > 30 \& \eta < 2.5 \& \Delta \eta < 1.5 \& m_{\rm jj} > 300$	Single jet + ΔR	$p_{ m T}({ m jet}) > 90$ & $ \eta({ m jet}) < 2.5$ & $\Delta R(\mu,{ m jet}) < 0.8$
	Triple jet	$p_{\rm T} > 95,75,65;$ two jets $p_{\rm T} > 75,65 \& \eta < 2.5$	Double μ + Single e/ γ	$p_{\rm T}(\mu) > 5$ & Tight quality(μ) & $p_{\rm T}({\rm e}/\gamma) > 9$ & $ \eta({\rm e}/\gamma) < 2.5$
$E^{\text{muss}}_{\text{muss}} > 100$ (Vector sum of n_{τ} of calorimeter denosits with $ n < 50$) Double $e/\gamma + \text{Single } \mu = n_{\tau}(e/\gamma) > 12$ & $ n(e/\gamma) < 2.5$ & $n_{\tau}(\mu) > 6$ & light quality (μ)	Energy sums Emiss	$F_{\rm miss}^{\rm miss} > 100$ (Vector sum of $n_{\rm T}$ of calorimeter deposits with $ v < 5.0$)	Double e/γ + Single u	$n_{\rm T}(e/\gamma) > 12 \& n(e/\gamma) < 2.5 \& n_{\rm T}(\mu) > 6 \& {\rm Tight quality}(\mu)$
$H_T = H_T > 360 (Scalar sum of p of automatic deposition of automa$	H_{T}	$H_T > 360$ (Scalar sum of v_T of all jets with $v_T > 30$ and $ v < 2.5$)	Double $c/q + U$	$p_1(e, \gamma) > 12 \approx \eta(e, \gamma) < 2.5 \approx p_1(\mu) > 0 \approx 11 \text{gauge}(\mu)$
$E_{\rm T}$ $E_{\rm T} > 2000$ (Scalar sum of $p_{\rm T}$ of calorimeter deposits with $ \eta < 5.0$)	$E_{\rm T}$	$E_{\rm T} > 2000$ (Scalar sum of $p_{\rm T}$ of calorimeter deposits with $ \eta < 5.0$)	Double $e/\gamma + n_{\rm T}$	$p_{\rm T}(e,\gamma) > 8 \propto \eta(e,\gamma) < 2.5 \propto H_{\rm T} > 500$
Terms used Four objects	Terms used		Four objects	
Tight quality: muons with hits in at least 3 different muon stations. Double μ + Double e/γ $p_T(\mu) > 3$ & Medium quality(μ) & OS(μ) & $p_T(e/\gamma) > 7.5$	Tight quality: muons with hits in at least 3 different muon stations.		Double μ + Double e/ γ	$p_{\rm T}(\mu) > 3$ & Medium quality(μ) & OS(μ) & $p_{\rm T}({ m e}/\gamma) > 7.5$
Medium quality: muons with hits in at least 2 different muon stations. The "universe all the provided at the	Medium quality: muons with hits in at least 2 different muon stations.		Double μ + Double e/ γ	$p_{\rm T}(\mu) > 5$ & Medium quality(μ) & OS(μ) & $p_{\rm T}({\rm e}/\gamma) > 3$
The non-colliding bX requirement selects beam-empty events. $AR = ((\Delta \phi)^2 + (\Delta \psi)^2)^{1/2}$ and phi is the azimuthal angle in radians	The "non-colliding BX" requirement selects beam-empty events. $AR = ((A t)^2 + (A t)^2)^{1/2}$ and phi is the azimuthal angle in radians		Five objects	
$\Delta x = (\Delta y) + (\Delta y) $	OS: Opposite Sign (of electric charge).		Deathle at L T ^{miss}	(u) > 2 for Tight quality (u) for Timiss > 50 f
$E_{\rm T}$: Scalar sum of $p_{\rm T}$ of calorimeter deposits.	$E_{\rm T}$: Scalar sum of $p_{\rm T}$ of calorimeter deposits.		Double $\mu + E_{T} +$	$p_{\rm T}(\mu) > 5 \propto \text{ fight quality}(\mu) \propto E_{\rm T}^{-1} > 50 \propto 10^{-1}$
$H_{\rm T}$: Scalar sum of $p_{\rm T}$ of jets. Single jet OR $(p_{\rm T}({\rm jet}) > 60 \& \eta({\rm jet}) < 2.5) {\rm OR}$	$H_{\rm T}$: Scalar sum of $p_{\rm T}$ of jets.		Single jet OR	$(p_{\rm T}({\rm jet}) > 60 \& \eta({\rm jet}) < 2.5) { m OR}$
Isolation and loose isolation: The isolation requires an upper limit on the transverse Double jet $(p_{\rm T}({ m jet}) > 40 \& \eta({ m jet}) < 2.5)$	Isolation and loose isolation: The isolation requires an upper limit on the transverse		Double jet	$(p_{\rm T}({ m jet})>40 \ \& \ \eta({ m jet}) <2.5)$
calorimeter energy surrounding the candidate. The limit depends on the pileup, the Level-1 candidate E_T and $ \eta $ Details are given in Sections ?? and ?? $H_T + Quad jet$ $H_T > 320 \& p_T(jet) > 70,55,40,40 \& \eta(jet) < 2.4$	calorimeter energy surrounding the candidate. The limit depends on the pileup, the Level-1 candidate $E_{\rm T}$ and $ \mu $ Details are given in Sections ?? and ??		$H_{\rm T}$ + Quad jet	$H_{\rm T} > 320 \& p_{\rm T}({\rm jet}) > 70,55,40,40 \& \eta({\rm jet}) < 2.4$

HEP 2022, 15-19 June 2022, Thessaloniki, Greece

The CMS Trigger System in LHC Run 3: GPU Acceleration

GPU vs CPU throughput

The histogram shows the absolute and relative throughput of the part of the HLT reconstruction that can be offloaded to GPUs, running on different hardware:

- the reference, in red, is a dual processor machine with 2× AMD "Rome" EPYC 7502 CPUs (from 2019);
- three generations of high power (250 W), dual-slot NVIDIA datacenter GPUs are shown in dark green: a Tesla K40 (from 2013), a Tesla P100 (from 2017), and a Tesla V100 (from 2018);
- the performance of a low power (70 W), single slot NVIDIA datacenter Tesla T4 (from 2019) is shown in light green.

CMS DP-2021/01