

An ATCA Processor for Level-1 Trigger Primitive Generation and Readout of the CMS Barrel Muon Detectors

15.6.2022

HEP2022 - 39th Conference on Recent Developments in High Energy Physics and Cosmology,

Thessaloniki, Greece

Ioannis Bestintzanos, BMTL1 team

 The CMS trigger consists of various subsystems, each responsible for a specific task

- During the HL-LHC upgrade of the LHC, the luminosity is planned to increase by an order of magnitude
 - Current trigger can't handle these rates
- This asks for upgraded electronics that can handle the increased data rates, but to also be able to accomodate more complicated algorithms, which will increase the physics-wise trigger efficiency

CMS Phase-2 L1 upgraded trigger scheme

- Receives input directly from electronics on the detector
- Inputs from DTs and RPCs
 - 10 Gbps optical
- Outputs to the GMT and the scouting system

 25 Gbps optical
- Will host the analytical method algorithm, which takes advantage of the significantly improved time resolution of the on-detector electronics
- Asks for high processing power, as well as a large amount of optical connectivity
- ATCA architecture is the experiment standard

CMS Phase-2 L1 upgraded trigger scheme

 Barrel Muon Trigger Layer-1 (BMTL-1) is the trigger subsystem responsible for reading data from the Drift Tubes (DTs) and the Resistive Plate Chambers (RPCs), directly from the detector. Information will be merged and combined into super-primitives, streamed to downstream systems

 BMTL-1 creates the track segments for the muon candidates, which are then forwarded downstream to the Global Muon Trigger (GMT), which joins the segments to create Muon tracks

Architecture of BMTL-1 ATCA board

• Xilinx XCVU13P FPGA

- Ultrascale+ architecture
- 16 nm lithography
- 4 SLRs (Super Logic Regions)
- 1,728,000 LUTs
- 3,456,000 Flip Flops
- 0 12,288 DSP slices
- 128 GTY transceivers @ 28G
- 2577 ball BGA package
- -1 speed grade
- Capability to use VU9P, VU11P
 - Design is drop-in compatible with these two smaller FPGAs, with only compromise a slight drop in connectivity

BMTL-1 ATCA board connectivity

Optical connectivity

- 40 RX @ 25 Gbps 10 x BiDir FireFly Modules 25G
- 40 TX @ 25 Gbps
- 80 RX @ 16 Gbps > 7 x Rx FireFly Modules 16G
- 36 TX @ 16 Gbps > 3 x Tx FireFly Modules 16G

120 RX + 76 TX ~ **3.9** *Tbps*

Samtec FireFly optical modules

Dense high-speed signal fanout under the FPGA

BMTL1 ATCA board system controller

- Enclustra Mercury XU5
 - XCZU5EV-1FSVC784E SoC
- Zynq Ultrascale+ architecture
- Quad core Arm Cortex A-53
 - Capable of running Linux
- Independent RAM on PS & PL
 - 2 GB (PS)
 - 1 GB (PL)
- Direct connections with the FPGA
 - 4 GTH MGTs @ 10G
 - 20 LVDS pairs
- SSD storage

Design challenges

- Clocking
 - Has to serve a large amount of links
 - Has to be very low jitter
 - Needs to be compatible with many operating scenarios
- Signal integrity
 - PCBs are very lossy at 25 Gbps
 - Very low loss dielectric material being used
 - Special design considerations for RF frequencies
 - Special technologies for PCB fabrication
 - Blind vias
 - Backdrilling

High speed signal fanout under FPGA

Highlighted part of the clocking network

High speed signal routing detail. Avoidance of sharp edges is critical for signal integrity.

Design challenges

- Power delivery
 - Core rail can consume in excess of 200A
 - Generation and delivery of such currents is not trivial
- Thermal design
 - The FPGA can dissipate more than 200W
 - Firefly optics reliability sensitive to high temperature
 - Extensive simulation of the card's thermal performance
 - Allowed for optimal component placement and aids optimal heat sink design
 - Custom heatsinks under design
 - Independent block heatsinks for the FPGA and the FireFlies

Core voltage power stage comprised of 7 phases

IR simulations proved very useful in optimizing current delivery

BMTL1 ATCA board

11

- Original plan was to assemble 1 board without the FPGA
 To test functionality without risking FPGAs
- Then proceed to assemble 2 boards with the FPGAs
 - After the functionality had been verified
- Assembler mistakenly assembled the FPGA on the first board
 - Built another one without the FPGA
 - Added more delay time

Two boards received beginning of May

- This board proved very useful since it allowed verification and configuration of the power circuitry and the ZYNQ - Could not be done to the FPGA board
 - Stress-tested power supplies
 - All power rails were stressed at 45+ Amps for a long time to observe the operation and ensure stability and thermals
 - Tested the Zynq Enclustra module
 - Zynq appeared in Vivado, build Ubuntu image and boot from SD card, run Python scripts to configure clocks and Fireflies
 - Configured and verified Ethernet Switch
 - Internet from Front Panel RJ45 and Backplane Zynq can access the Internet
- This Board is still operating as a development platform particularly useful for ZYNQ

First tests with the FPGA board

- After enough information were gained from the no-FPGA board, we started working on the one with the FPGA
- Power on went smoothly without issues
- XCVU13P appeared on Vivado
- First tests done with IBERT bit files
 - Test clocks, link stability by counting errors, link quality with eyes
- After taking the first eyes more MGTs were instantiated and scanned all possible 16G and 25G links

Signal integrity metrics

- Data sampler : samples in the middle of the eye
- Offset sampler : samples anywhere in the eye
- Difference between the data sampled by the two samplers, reveals the RX margin
- Built-in functionality in many MGTs
- Produces the eye diagram
- Bit Error Rate (BER)
 - Number of bit errors divided by the total number of transferred bits

• First eye taken

- GTY @ 25 Gbps
- External loopback w/ fiber
- This eye and all the rest shown, have been taken at *suboptimal* conditions, that is :
 - MGTAVTT operating using only 1 phase
 - Critical for the performance
 - Power rails were still in debug mode
 - Allowed their isolation, using voltage feedback behind the shunt resistors
 - Caused voltage drop on the rails
 - Now turned to operation mode, which already shows better results

First eye-scan taken from a GTY transceiver on-board, using external loopback with 2m fiber

25G Eyescans

IBERT with all 40 25G MGTs instantiated and operating simultaneously

- 2 meter optic fiber
- 25.6 Gb/s
- PRBS7
- Resolution 1
- Eyescan BER 1e-8

16G Eyescans

Tcl Console Messa	ges Serial I/O	DLinks × S	ierial I/O Scan	s															?
Q ≚ ≑ +																			
Name	TX	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern	RX Pattern	Loopback Mode	TX Pre-Cursor	TX Post-Cursor	TX Diff Swing	DFE Enabled	Inject Error	TX Reset	RX Reset	RX PLL Status	TX PLL Status
🚍 Ungrouped Links ()	(0)																		
Sound Links (8)							Reset	PRBS 31-bit	 PRBS 31-bit 	✓ None	 0.00 dB (00000) v 	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset]	
% Found 0	MGT_X1Y46/T	X MGT_X1Y40/R	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	 PRBS 31-bit 	✓ None · · · · · · · · · · · · · · · · · · ·	✓ 0.00 dB (00000) √	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 1	MGT_X1Y47/T	X MGT_X1Y41/R	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	 PRBS 31-bit 	v None	 0.00 dB (00000) v 	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 2	MGT_X1Y44/T	X MGT_X1Y42/R	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	✓ PRBS 31-bit	v None	 0.00 dB (00000) v 	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 3	MGT_X1Y45/T	X MGT_X1Y43/R	25.782 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	✓ PRBS 31-bit	v None	 0.00 dB (00000) v 	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 4	MGT_X1Y42/T	X MGT_X1Y44/R	x 25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	✓ PRBS 31-bit	v None	 0.00 dB (00000) v 	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 5	MGT_X1Y43/T	X MGT_X1 Y45/R	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	✓ PRBS 31-bit	v None	 0.00 dB (00000) v 	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 6	MGT_X1Y40/T	X MGT_X1 Y46/R	x 25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	✓ PRBS 31-bit	v None	 0.00 dB (00000) v 	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 7	MGT X1Y41/T	X MGT X1Y47/R	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	✓ PRBS 31-bit	v None	0.00 dB (00000) v	0.00 dB (00000) v	950 mV (11000) v	0	Iniect	Reset	Reset	Locked	Locked

- BER was tested down to ~9 x 10E-16 / link
 - No errors appeared
 - Will be tested for even less BER when more optical supplies arrive

- Stress tested power supplies
 - All rails stressed up to 45A with Ο external load
- VCCINT stressed up to 125A •
 - To be stressed more with adequate Ο cooling
 - Power supply limit is 400+ A, so still a Ο lot of headroom
- Tested all clocks using oscilloscope and **IBERT** links
- Board inserted in crate and shows good • mechanical fit
 - Did not fit it all the way in Ο
 - Should try again when we have a front Ο panel

- Tested all I2C devices
- Tested external clocks
- Tested all fireflies
- Tested Ethernet (switch circuitry) Front Panel Zone 2 ZYNQ

- Tested Zone 1 & 2
- **Tested UART**

- ZYNQ System Controller
 - Finalize functionality for access/control of the FPGA
 - Software for controlling on-board peripherals
- FPGA Integrate EMP Framework
 - Provides control of the FPGA firmware over ZYNQ
 - Includes functionality such as CSP, GBT, LpGBT link protocols, TTC & TCDS, etc.
- Develop custom designed Heatsinks
 - One for the FPGA and two for the the Fireflies
 - Will occupy most area on the PCB
 - Optimized cooling efficiency will allow to reach high power dissipation
- Manufacture Front Panel
- IPMC firmware development
- Production of one more fully populated board in the coming weeks

- An ATCA board meeting the specifications of the BMTL-1 was designed
- PCBs were produced
- Two boards were assembled
- The functionality of the design was tested and verified
- One more board to be produced soon
- Further developments are already on-going