The Barrel Muon Trigger system of CMS in Phase-2 - Design and Performance

HEP2022 - 39th Conference on Recent Developments in High Energy Physics and Cosmology, Thessaloniki, Greece

15.06.2022

Kosmas Adamidis

Barrel Muon Trigger Group

GOBIERNO DE ESPAÑA E INNOVACIÓN

- Phase-2 Level-1 Trigger of CMS Experiment
- Barrel Muon Trigger system in Phase-2
- Hermes and CSP optical protocols
- BMT Layer-1 Hardware and Firmware
- Barrel Muon Trigger slice tests
- Future Plans

Updated LHC/HL-LHC Plan

Four independent data processing paths

- Calorimeter Trigger Path
 - Builds calorimeter-only objects
 - \circ ~ e/ $\!\gamma$, tau leptons, jets and energy sums
- Muon Trigger Path
 - Reconstructs muon candidates
- > Track Trigger Path (not present in Phase-1)
 - **Reconstructs tracks** of charged particles
- > Particle-Flow Trigger path (not present in Phase-1)
 - Implements sophisticated algorithms to produce higher-level trigger objects
 - Provides a sorted list of objects to the Global Trigger
- > Global Trigger
 - Receives outputs of the four Trigger paths
 - **Runs physics menu** of algorights
 - Calculates the trigger decision accept or ignore an event

UNIVERSITY OF IOANNINA

Barrel Muon Trigger Structure - 1

- Barrel Muon Trigger (BMT) reconstructs Muons of the CMS Barrel ≻
- **On-Detector** $\mathbf{\Sigma}$
 - Drift Tubes (DT) and Resistive Plate Chambers (RPC) transmit 0 Muon hits to the BMT Layer-1
- BMT Layer-1 (BMTL1) \succ
 - Builds DT track segments and clusters RPC hits 0
 - Merges both sub-system information to the combined 0 "super-primitives"
- Global Muon Trigger (GMT) $\mathbf{\Sigma}$
 - Matches track segments to reconstruct standalone Muon 0 objects

Barrel

Muon

Barrel Muon Trigger Structure - 2

- "On detector Board for Drift Tubes" board (OBDT) transmits detector data to BMTL1
 - Responsible of the time digitization of the DT signals 0
- BMTL1 processes hits information per one DT Chamber
 - Analytical Method (AM) algorithm produces muon stubs (track segments) 0
 - Bunch Crossing, Stub Position & Bending Angle
- Stubs of the 4 Chambers are received in the GMT
 - Kalman Muon Track Finder (KMTF) algorithm matches tracks and reconstructs Muon candidates
 - Assigns them Position and Momentum

Kosmas Adamidis - Uol

Barrel Muon Trigger Structure - 3

- CMS Barrel Muon system consists of 60 DT Sectors
 - 4 DT Chambers each 0
- OBDT board transmit TDC hits to BMTL1
 - About 14 OBDTs per DT Sector 0
- Every BMTL1 board process information from 1 Sector
 - 60 BMTL1 boards needed for the whole Barrel 0
- GMT consists of 18 X2O boards in total

15.06.2022

Synchronicity and Data processing in CMS

- > CMS subsystems must be **synchronous with the LHC 40 MHz clock**
 - Subsystems must be aware of which Bunch Crossing data they process
- Trigger Algorithms run on FPGAs and process 64bit data words
 - Data are received from previous processing stage
 - The algorithm block runs the necessary processing
 - Produced data are transmitted to the next subsystem
- > This operation must be **synchronous with the LHC clock**
- > To transfer data two FPGAs must run the **same optical Protocol**
 - Optical Protocols utilize the Xilinx FPGAs MGT Transceiver devices

15.06.2022

Hermes and CSP

Hermes 64b67b

- Hermes was a joint project between University of Ioannina and the Imperial College of London
 - **Optical link protocol** running at 16 and 25 Gbps
 - Physical layer runs asynchronously wrt the processing clock
 - User data delivered synchronously wrt to the LHC clock
 - Reliable data transmission protected from synchronization loss
 - Devotes all payload bandwidth to the transmission of physics data
- Hermes and Iridis (UW) were merged to the CMS Standard
 Protocol (CSP)
 - Common syntax different VHDL implementations
 - Includes advantages of both protocols
 - Uses two FEC mechanisms and scrambles the 65th bit to achieve DC balancing

CSP will be used by all Level-1 Trigger ATCA cards

BMTL1 Hardware Developments

- BMTL1 Demonstrator
 - First hardware platform developed by the group (2019)
 - Kintex Ultrascale KU040 FPGA
 - 16 Optical Links @ 16G
 - 12 via Samtec Firefly
 - 4 via QSFP
 - Simple clocking network
 - No form factor
- BMTL1 ATCA card
 - Full functionality ATCA card
 - Virtex Ultrascale Plus VU13P FPGA
 - 40 Bidirectional Optical Links @ 25G via Samtec Firefly
 - 80 Rx & 36 Tx Optical Links @ 16G via Samtec Firefly
 - ZYNQ SoC to control FPGA & peripherals
 - Complex multipurpose clocking network
 - And more

OF IOANNINA

Kosmas Adamidis - Uol

BMT hardware and firmware have matured enough to start having board to board tests

- First versions of Phase-2 hardware
- BMT slice tests started September 2021 at CMS surface and now include
 - 1 DT Chamber connected to 1 OBDT board
 - The BMTL1 Demonstrator card until production of the ATCA card
 - The Ocean card

BMT Slice Tests

> Full Detector to GMT processing chain

OBDTV

December 2021

September 2021

BMTL1 Demo

Slice Tests - P5 Setup

Setup at CMS surface area

BMT Slice chain: DT Chamber -> OBDTv1 -> BMTL1 Demo -> Ocean

Slice Tests - P5 Setup

- > First action on the setup was to validate data reception between the two individual chains
 - OBDT -> BMTL1 Demo
 - 2 Tx GBT Links @ 4.8 Gb/s
 - Counter data running for 7 days
 - No Errors

> Next action to validate the firmware of BMTL1

- BMTL1 Demo -> Ocean
 - Using CMS Standard Protocol (CSP)
 - 4Tx & 4Rx Links @ 16 Gb/s
 - Running 2 days No CRC Errors

BMTL1 Firmware

- BMTL1 uses the EMP framework framework of the Serenity boards
 - Modified version to match characteristics of Demonstrator board
- BMTL1v0 framework includes
 - GBT protocol to communicate with OBDT
 - **1 instance of the Analytical Method algorithm** to produce Muon Trigger Primitives (stubs) for 1 Chamber
 - Developed by CIEMAT
 - CSP protocol to transmit data to GMT
 - TTC block to synchronize with the BC0 tag
 - EMP Buffers for testing purposes

Ocean Firmware - UCLA

- Ocean firmware runs the **KMTF algorithm** to match tracks and reconstruct Muon candidates
- Ocean runs scouting system that allows collection of cosmic data over many hours
 - Features a ZYNQ US+ SoC and DDR4 memory tightly connected to the 0 **FPGA**
 - Streama data from the FPGA Logic to the DDR4 memory Ο
 - Through an AXI interface configured for Direct Memory Access
 - Linux application in the CPU reads the data from the memory and writes 0 to the SSD drive

Slice Tests - Results with Cosmic Muons

BMTL1 to GMT slice test

- KMTF algorithm validated using patterns passed from BMTL1 Demo to Ocean
 - $\circ \quad \text{Monte Carlo patterns from } Z \rightarrow \mu \mu \text{ events}$
- Plots compare Algorithm results with CMSSW emulator
 - 100% agreement on Pt and Phi

Slice Tests with BMTL1-ATCA

- BMTL1-ATCA board produced on May
 - All tests have shown very good results
- Next plan is to perform Slice Tests using the actual BMTL1 ATCA card
 - Slice test closer to the final system
- Many developments still needed to have the card ready to be used
 - Trying to have it ready by the end of summer

OF IOANNINA

- Many developments of last years are now used in realistic tests
- Barrel Muon Trigger slice test setup includes a full chain from the Detector to GMT
- Cosmic Muon results validate the operation of the subsystem
- More remain to be done with the new BMTL1 ATCA card

Funding: is financed from the project DeTAnet – MIS 5029538 – Ministry of development & Investments

Thank you for your attention!

BMTL1-v0 Firmware Integration Steps

- 1. **Trigger algorithm integration and evaluation** through custom spy buffers with simulation data.
- 2. **EMP buffer injection and EMP buffer readout**: validates all payload module (including algorithm plus hit decoding and conditioning and clock-domain crossings).
- 3. **Injection of a golden muon in OBDT** (as a pattern but a pattern that would really generate a correlated trigger primitive). Readout in final EMP buffers.
- 4. Injection of a golden muon in OBDT and **readout of the TPGs at the Ocean.**
- 5. Injection of real cosmic data in the OBDT and readout in the Ocean.

