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Motivation for precise timing in HEP 
• In the High Luminosity LHC, ~140 “pile-up” proton-proton 

interactions (“vertices”) in the same pp bunch-crossing 
• Tracking information (3D) is not enough to associate interactions 

to the corresponding vertex
• Demand for precise timing detectors for physics 
• Precision down to 30 ps or more
• Precise track reconstruction in the very demanding HL and very 

HE environments of future colliders (e.g. FCC) will require 4D 
treatment

Available detecting technologies
Solid state detectors

• Avalanche photodiodes (σt ~ 20 ps)
• Low Gain Avalanche Diodes (σt ~ 20 ps)
• HV/HR CMOS (σt ~ 80 ps)

Radiation hardness = ?
Cost =✗

Gasseous detectors

• RPC (σt ~ 30 ps)
• Micro-Pattern Gaseous Detectors (σt ~ 4 ns)

Precise timing detector requirements: 
• Tens of ps timing precision 
• Large surface coverage 
• Resistance against ageing
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A typical Micromegas detector and its limitations in the timing domain 

• Even though gaseous detectors performs well 
for spatial measurements (high spatial 
resolution down to tens of microns) they have 
limited  precision in timing measurements

• Stochastic nature of ionizations 
• Ionization start point variates à ns time 

jitter for 3 – 6 mm conversion region
• Difussion effects 
• Time resolution only down to 5 ns

Drift Gap / Conversion region
A traversing particle drift toward the readout plane
ionizes gas molecules à free electrons drift

Amplification region
High electric fieldà avalanche creation àmoving 
charges induce signals

Y. Giomataris, P. Rebourgeard, J. Robert, G. Charpak, MICROMEGAS:
A high granularity position sensitive gaseous detector for high particle flux
environments, Nucl. Instrum. Meth. A 376 (1996) 29–35
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The PICOSEC - Micromegas

Modification of detector’s geometry
• Smaller drift gap

• From a few mm to some hundreds of microns
• Higher Drift Voltage 

Additional parts
• Cherenkov radiator 

• A traversing particle produces Cherenkov 
light

• Photocathode instead of the classic cathode
• Photoelectrons extracted from the 

photocathode simultaneously

• The MIPs produce synchronous Cherenkov photons in the radiator
• The photocathode emits synchronous photoelecrtons 
• Preamplification avalanche

PICOSEC: Charged particle timing at sub-25 picosecond precision 
with a Micromegas based detector J. Bortfeldt et. al. (RD51-PICOSEC 
collaboration), Nuclear. Inst. & Methods A 903 (2018) 317-325
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Timing resolution calculation

• Compare the measured time of the PICOSEC-
Micromegas with a reference detector of much 
better resolution e.g MCP (≈ 5 ps)

• Timing of MCP’s signal with the same process
• Subtract the PICOSEC-Micromegas SAT from the 

MCP SAT
• Time resolution = RMS[ΔSAT]

• CFD method sould not suffer from the time walk 
effect

• In our data we have dependence of the ΔSAT 
and Resolution on the signal amplitude

• Results from the microscopic behavior of the 
avalanche 

• The photoelectrons drift with different 
velocity than the avalanche as a whole
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• Calibration curve: 𝑔 𝑥; 𝑎, 𝑏, 𝑤 = 𝑎 + !
"!

• Correct all SAT values: 𝑆𝐴𝑇#$%& = 𝑆𝐴𝑇#$%& −
'
("
+ 𝑐

• Re-fill the ΔSAT distribution
Best results: 24 ± 0.3 ps
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TOWARDS A LARGE SCALE
DETECTOR
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A multichannel PICOSEC – Micromegas prototype

• Big experiments like ATLAS need large scale detectors like the 
presented MM earlier

• The large scale PICOSEC – MM should:
• Deliver the 25 ps resolution
• Robust
• Reasonable cost

• Introduced the first Multipad PICOSEC- MM 
• Similar detector configuration like the single pad:

• MgF2 radiator of 3 mm thickness
• 18 nm CsI photocathode on 5.5 nm Cr
• Bulk Micromegas
• “COMPASS” gas
• 220 μm drift gap
• Hexagonal pads of 1 cm diameter

• New challenges have emerged with the proposed multi channel 
scheme
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Flatness corrections

• ≈25 ps resolution nearby the pads’ centers
• Scan across different pads’ regions revealed SAT differences

• Outer vs inner area on peripheral pads
• Gain non-uniformity à worse time resolution
• Pad No. 7 was less affected
• The time resolution of the central pad is an exlusive function of 

the Qe
• Resolution of peripheral pads depends on both Qe and MIP 

impact point  

7: Central pad
4, 8, 11: Peripheral pads
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The first attempt: unforeseen deformation

l Timing performance revealed anode 
deformation (confirmed later by an 
optical device measurement)

l Drift gap non uniformity →spatial 
variation of the detector gain 

l Direct impact on the timing 
performance between pads

l Corrections applied, restored a 
uniform timing response over all 
detector active area

Timing performance of a multi-pad PICOSEC-Micromegas detector prototype, NIM A 933 – 2021
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Flatness corrections

• Reference axis: The axis collinear to the line segment connecting 
the understudy peripheral pad with the central pad centre and 
directing towards to the centre of the central pad

• Measurements on seed points along several test-axis 
• On each seed point collected tracks passing within 0.5 mm 

around it
• Signals on negative distances arrive faster than the mirroring 

points
• The mean SAT assymetry reflectst the spatial variation of the 

drift velocity
• Maps the variation of the drift field due to deformations
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• For each peripheral pad parametrized the 
mean SAT values as a function of cylindical 
coordinates in the pad frame 𝑆) 𝑟, Θ

• SAT along the axis with Θ = 90& are 
symmetric

• A correction factor introduced:  Δ) 𝑟, Θ =
𝑆) 𝑟, Θ − 𝑆)(𝑟, Θ = 90&)

𝑇*%&++) = 𝑇,-.) 𝑟, Θ − Δ)(𝑟, Θ)

*Charges of peripheral pads scaled down due to the  different gain
** The solid curves represent fits of the central pad data.

MIPs passing within 2 mm all pads center à
σ = 25.8 ± 0.6 ps 
Method consistency confirmed by the Pull 
distribution  

Flatness corrections
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The single pad measurements are used to estimate a combined MIP arrival time by the 
minimization of the 𝜒/ :

𝜒/ = 7
012,4

(𝑇%&0! − 𝑇%&++0 − 𝜏 𝑄50 )/

𝜎/(𝑄50)
→ <𝑇%&0! =

∑012,4
(𝑇%&++−𝜏 𝑄50 )

𝜎/ 𝑄50

∑012,4
1

𝜎/(𝑄50)

Combining timing information from several pads

RMS = 32,2 ± 0.5 ps !

For a better resolution than 20 ps, a tollerance greater than 20 μm is essential 
!



THE CURRENT PROTOTYPE
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A modular design mult-pad PICOSEC - MicroMegas

2016 2018 2022

single cell 
PICOSEC

segmented PICOSEC 
detector

multipad PICOSEC tile window 
pattern 

PICOSEC

single tile  
PICOSEC

(Florian M. Brunbauer, EP R&D Seminar, May 3, 2021)
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A modular design mult-pad PICOSEC - MicroMegas

Re-design of the multipad detector:
• Larger surface (x10 times) and the number of 

channels (x5 times -100 channels-)
• Mosaic-type of 1 cm side pads
• Thick hybrid ceramic PCB for improved rigidity 

instead of just FR4
• PCB flatness within 10 μm over the active area   

❌ FR4 (3mm thickness): 100 μm max displacement in the active area  
✅ Ceramic (4 mm thickness): 4 μm max displacement in the active area 

(Antonija Utrobicic, RD51 Collaboration Meeting, February 16, 2021)
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Performance of each pad and global description 
• Mean SAT and resolution was calculated for bins of different Signal size (E-Peak charge)

• A uniform drift field across the Pad surface should result to the same, for all Pads, 
dependence of mean SAT and Resolution on the E-Peak Charge

• All Pads presented the same dependence of mean SAT and Resolution on the E-peak 
charge

• Both of these quantities can be described by the same “global” functions

Preliminary Preliminary
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σ = 24 ps

All pads together

Preliminary

Preliminary
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Preliminary

Preliminary

Preliminary
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Signal sharing in the common corner 
• The signal sharing was studied on the common corner for tracks passing within 3 mm of their 

common corner
• Only a fraction of the photoelectrons contribute to signal formation on each pad
• It was assumed that each of the pad signals carries an independent information on the MIP arrival time 
• The total charge distribution at the common corner is simillar to the distributions on the center of 

the pads

à The Cherenkov cone is shared almost equally between pads

7
$12

6!"#$

𝑞5$ 785')

< 𝑄9&9': >= 16.2 𝑝𝐶
𝑅𝑀𝑆.;.-< = 6.9 𝑝𝐶
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Signal sharing on the common corner 

The estimated combined time from the single pads measurements is given as:

𝑡̂%&0! =
1

∑$12
6!"#$ 1

(𝑅 𝑞$ /)

K 7
$12

6!"#$
𝑡,-.$ −𝑊(𝑞$)
𝑅 𝑞$ /

𝑊(𝑞$): The SAT vs q parameterization
𝑅 𝑞$ : The resolution vs q parameterization

𝜎%&0! = 30.0 ± 0.5 𝑝𝑠
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Thin gap PICOSEC

• PICOSEC detector with thinner drift gap devloped in CEA Sacalay
• Single channel detector
• Drift gap reduced from 220 μm to 180 μm
• σ = 17.5 ps with Vc = 475V

• Thin drift gap multipad detector constructed
• Drift gap: 180 μm 
• σ = down to 16.7 ps! with Vc = 465V

Antonija Utrobicic Advancements in a large area 100 channel PICOSEC Micromegas 
detector module, RD51 Collaboration Meeting

σ =16.7 ps

PAD 12 13 22 23 24

RMS (ps) 16.7 16.9 17.9 17.3 17
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Preliminary

σ = 24.2 ± 0.6

The neural network implementation

Preliminary

• Pulses with digitization of 200 ps
• 80% training 
• 20% validation
• The NN learns not only the timing, but also 

the relevant delays between pads

• NN slewing consistent to zero ±3 ps
• NN estimated resolution (points) vs our analysis (curves for 

different pads)
• Similar results
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Conclusions 

• The results from the first multipad was not perfect but promising 
• Changes on the design of the second multipad was effective

• Time resolution scans across several pads and inside each pad confirmrd that
• A global parametrization of the several pads is also an encouraging

• Timing resolution of 30 ps for sharing signals is great
• The thin gap variants can boost the detector to even better results
• The NN reolution calculation is similar to the typical analysis

• Very promising for fast online signal analysis
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