



Measurement of the W-boson helicity

in **t** decays, from  $t\overline{t}$  production, in  $\ell$ +jets events from p - p collisions at  $\sqrt{s} = 13$  TeV

## with the CMS detector

Anna Stakia<sup>1</sup> on behalf of the CMS Collaboration

<sup>1</sup>National Centre for Scientific Research 'Demokritos'

HEP2022 – 39<sup>th</sup> Conference on Recent Developments in High Energy Physics and Cosmology Thessaloniki, Greece, Friday 17/06/2022



## Physics Analysis: Team & CMS Note





Javier Brochero Cifuentes

Georgios Daskalakis

Anna Stakia



29 March 2019 (v5, 05 June 2021)

Measurement of the W-boson helicity in top decays from ttbar production in lepton+jets events with the CMS detector at  $\sqrt{s} = 13$  TeV

Mara Senghi Soares, Javier andres Brochero Cifuentes, Georgios Daskalakis, Anna Stakia

#### Abstract

We report a measurement of the W-boson helicity fractions from top quark decays, based on a data sample corresponding to an integrated luminosity of  $137fb^{-1}$  of proton-proton collisions at a centre-of-mass energy of 13 TeV, collected in 2016-2018 by the CMS experiment at the LHC. The measurement uses the semileptonic decays of the  $t\bar{t}$  pairs and the single top production (tW and t-channel). The results are consistent with standard model expectations.



## Physics Analysis: Top quark & New Physics

### Top quark

- Large mass: Heaviest known elementary particle;  $m_t \cong 173 \text{ GeV}$  [Fermilab, 1995]
- Short lifetime: < strong interactions' timescale; decay time < typical hadronization time  $\Rightarrow$ 
  - no jets (special quark behaviour)



- passes its info (e.g. spin) to the decay products ⇒ unique opportunity to study the bare quark properties preserved in the decay chain, by measuring observables' distributions in the products
- Important role in nature & study of fundamental interactions
- top couplings may exhibit signs of BSM Physics => unique environment for NP searches, beyond SM tests
  - $t \xrightarrow{\text{SM: } Pr \cong 1 \ (|V_{tb}|\cong 1)} W + b \rightarrow (\ell + \nu_{\ell} + b) \text{ or } (q + \overline{q'} + b) \text{ [Subsequent } W \text{ decays define final states of } t\overline{t} \text{]}$
  - Anomalous Wtb vertex couplings  $\Rightarrow$  sensitivity to NP processes, extra to the precision measurement



### Motivation: W helicity fractions

-Anomalous Wtb couplings  $\leftarrow$  Altered W helicity fractions in t decays (measurement sensitive to the vertex structure)

- W helicity fractions in  $t \to Wb$ :  $F_{O,L,R} = \frac{\Gamma_{O,L,R}}{\Gamma}$ , where  $\Gamma_{(O,L,R)}$ : (partial) decay rate
- $[SM, NNLO]^* \begin{cases} F_0 = 0.687 \pm 0.005 & \text{O: longitudinal} \\ F_L = 0.311 \pm 0.005 & \text{L: left-handed} \\ F_R = 0.0017 \pm 0.0001 & \text{R: right-handed} \end{cases} \begin{bmatrix} m_t = 172.8 \pm 1.3 \text{ GeV}, \\ m_W = 80.401 \pm 0.043 \text{ GeV} \end{bmatrix}$
- $\frac{\text{CMS PAPER TOP-19-004}}{(\text{cds.cern.ch/record/2717564})}$ Combined result
  on W helicity measurement
  by ATLAS & CMS at  $\sqrt{s} = 8 \text{ TeV}$
- Experimentally,  $F_{O,L,R}$  can be extracted from measurements of angular distributions of t decay products, i.e.  $\cos \theta^*$
- helicity angle  $\theta^*$

(direction of down-type fermion (lepton) momentum in the the W rest frame and the W momentum in the top quark rest frame)



\* doi:10.1103/PhysRevD.81.111503

## **Measurement**: *W* helicity (fractions $F_{O,L,R}$ ) in *t* decays from $t\bar{t}$ production in $1\ell$ +jets events

#### - Goal

decay properties

Extraction by means of a template fit, using a strong discriminating variable



⇒ Significant opportunity to check validity of SM -consistent with results so far- and/or provide NP hint if deviations found

### MC & Data samples: Production

| MC (central)                  | Signal         |           | tt      | (semileptonic | )                |
|-------------------------------|----------------|-----------|---------|---------------|------------------|
|                               |                |           |         | (inclusive)   | -                |
|                               |                |           | st      | tW            |                  |
|                               |                |           |         | t-channel     |                  |
|                               |                |           |         | s-channel     |                  |
|                               | BKG            | tt BKG    | tt      | toHadronic    |                  |
|                               |                |           |         | to2L2Nu       |                  |
|                               |                | other BKG | ttV     | ttW           |                  |
|                               |                |           |         | ttZ           |                  |
|                               |                |           | V+jets  | W+jets        |                  |
|                               |                |           |         | DY+jets       |                  |
|                               |                |           | QCD     | MuEnriched    | diff pt ranges   |
|                               |                |           |         | EMEnriched    | diff pt ranges   |
| Data Single lepton SingleMuon |                |           |         |               |                  |
|                               | SingleElectron |           |         |               |                  |
| MC (systematics)              | Signal         |           | tt / st | mtop          | diff mass ranges |
|                               |                |           |         | Tune          | up               |
|                               |                |           |         |               | down             |
|                               |                |           |         | DS            |                  |
|                               |                |           |         | erdON         |                  |
|                               |                |           |         | scale         | up               |
|                               |                |           |         |               | down             |
|                               |                |           |         | hdamp         | up               |
|                               |                |           |         |               | down             |
|                               |                |           |         | ISR           | up               |
|                               |                |           |         |               | down             |
|                               |                |           |         | FSR           | up               |
|                               |                |           |         |               | down             |
|                               |                |           |         | colourFlip    |                  |
|                               |                |           |         | CR1           |                  |
|                               |                |           |         | CR2           |                  |

| basic in the analysis | diff generators(signal) |  |
|-----------------------|-------------------------|--|
|                       | diff extensions         |  |
| for more statistics   | Psweights/-             |  |
|                       | new_pmx/-               |  |

~170 samples
 for 2016

| version                    | v5            |  |
|----------------------------|---------------|--|
|                            | v6            |  |
|                            | v7            |  |
| Tune                       | CUETP8M1/M2T4 |  |
|                            | CP5           |  |
| Year                       | 2016          |  |
|                            | 2017          |  |
|                            | 2018          |  |
| necessary code adaptations |               |  |

A very large amount of samples "produced" for the needs of this analysis

### W helicity fractions extraction: Discriminating variables



## Object reconstruction and Event selection

#### > Selection

- Single lepton channels
  - Triggers used: [2016, 2018] IsoMu24, Ele32\_WPTight\_Gsf

[2017] IsoMu27, Ele35\_WPTight\_Gsf
 *p<sub>T</sub>* cuts: [2016, 2018] μ (e) : *p<sub>T</sub>* > 25 (34) *GeV*

[2017]  $\mu$  (e) :  $p_T > 28$  (36) GeV

- Vetoed  $\geq$  1 additional iso  $\mu$  or e  $\Rightarrow$  dileptonic (tt or DY+jets) rejected
- $\geq$  2 jets:  $p_T > 40,30$  GeV, additional jets:  $p_T > 20$  GeV
- $\geq$  1 b-jet  $\Rightarrow$  W+jets and QCD suppressed

#### Objects

- Cut based leptons (tight for both, e and  $\mu$ )
- Jet cleaning from selected leptons
- DeepCSV tagging algorithm, Medium W.P.
- Scale factors
  - Lepton ID/ISO/Trigger
- > 6 different regions for the  $m_{\ell b}$  distribution (under testing)
  - (2j, 2b), (3j, 2b), (3j, 3b), (4j, 2b), (4j, ≥3b), (≥5j ,≥2b)





# b-jet from the leptonic t decay $\leftarrow$ BDT for the correct pair ( $\ell$ , jet)

|    |              | Reco-level b- jet :                                                     | Training on pairs                                           |
|----|--------------|-------------------------------------------------------------------------|-------------------------------------------------------------|
| es | Matched      | Identified, matched to gen-level b-quark                                | & $\ell$ -jet from the same top decay $\Rightarrow$ correct |
|    | Not possible | Not matched or not identified (e.g. outside event selection acceptance) | & whatever $\ell$ -jet combination $\Rightarrow$ wrong      |



### BDT: response, correlation matrix & results



Additional (loose) cut imposed to improve purity of selected events



## **QCD Estimation**: Shape & Normalisation

- QCD shape & normalisation is estimated from data
  - Shape ← from anti-isolation region
  - **#Events** ← via ABCD method
    - 1. Isolation
    - 2. BDT response



### **Distributions**: Various variables [Runll]

×10<sup>6Preliminary</sup> ×10<sup>6Preliminary</sup> ×10<sup>3Preliminary</sup> Run II, 138 fb<sup>-1</sup> (13 TeV) Run II, 138 fb<sup>-1</sup> (13 TeV) Run II, 138 fb<sup>-1</sup> (13 TeV) Events Events Events 0.25 1 . . . . ..... 8 Data QCD Data W+jets W+jets Data QCD W+jets ∎tī∨ I+jets (3j2b) Z+jets Πvv Z+jets ∎tī∨ l+jets (3j3b) Z+jets ∎tī∨ 0.4 I+jets (2j2b) tt Bkg t s-channel t s-channel tt Bkg tt W t s-channel tt Bkg tW t t-channel tť stat. t t-channel tt stat. t t-channel stat. tť 0.3 0.2 0.15 0.2 0.1 0.1 ⊨. 0.05 0 100 60 80 120 140 40 40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 Lepton pT [GeV] Leading jet p\_ [GeV] Lepton pT [GeV] ×10<sup>3Preliminary</sup> ×10<sup>6</sup>Preliminary ×10<sup>6Preliminary</sup> Run II, 138 fb<sup>-1</sup> (13 TeV) Run II, 138 fb<sup>-1</sup> (13 TeV) Run II, 138 fb<sup>-1</sup> (13 TeV) Events Events Events W+jets Data Data Data QCD W+jets QCD W+jets Z+jets ∎tť∨ Z+jets ∎tī∨ ∎tī∨ l+jets (4jge3b) I+jets (4j2b) 700 Z+jets I+jets (4j2b) 25 tt Bkg 📘 tī Bkg t s-channel t s-channel 📑 tễ Bkg 🔤 tW t s-channel tW t t-channel tī stat. 0.15 t t-channel tť stat. stat. t t-channel tī 20 0.1 0. 15 10 0.05 0.05 0 0 100 200 250 100 120 140 160 180 200 60 80 120 140 50 150 60 80 40 100 40 Leading jet p\_ [GeV] MET [GeV] Lepton pT [GeV]

PRELIMINARY

QCD from MC

### Fit performance: Template fit

- Performed with COMBINE tool
- The templates fitted correspond to the (5) regions 2j2b, 3j2b, 4j2b, [3j3b and (4j, ≥3b)], (≥5j, ≥2b) /channel/year
- Fit performed simultaneously over all 5 regions and both decay modes
- Binning selected based on the available statistics, stability in the uncertainties & discrimination power among fractions
- Fit Model: 3 POIs:  $\sigma_{t\bar{t}}$  associated to the normalisation of the  $t\bar{t}$  events,  $F_0$  and  $F_L$

 $F_{\rm R}$  comes from unitarity:  $F_0 + F_L + F_R = 1.0$ 

$$\begin{split} \text{Data} &= \left(\frac{\sigma_{\text{t}\bar{\text{t}}}^{\textit{Fit}}}{\sigma_{\text{t}\bar{\text{t}}}^{\textit{MC}}}\right) \times \left[\frac{\text{F}_{0}^{\textit{Fit}}}{\text{F}_{0}^{\textit{SM}}} \text{PDF}(\text{t}\bar{\text{t}}_{\text{F}_{0}}) + \frac{\text{F}_{\text{L}}^{\textit{Fit}}}{\text{F}_{\text{L}}^{\textit{SM}}} \text{PDF}(\text{t}\bar{\text{t}}_{\text{F}_{\text{L}}}) + \frac{1 - \text{F}_{0}^{\textit{Fit}} - \text{F}_{\text{L}}^{\textit{Fit}}}{\text{F}_{\text{R}}^{\textit{SM}}} \text{PDF}(\text{t}\bar{\text{t}}_{\text{F}_{\text{R}}})\right) \\ &+ \left(\frac{\sigma_{\text{t}\bar{\text{t}}}^{\textit{Fit}}}{\sigma_{\text{t}\bar{\text{t}}}^{\textit{MC}}}\right) \times \text{PDF}(\text{t}\bar{\text{t}}_{\text{Bkg}}) + Bkg \end{split}$$

- Systematic uncertainties implemented as nuisance parameters. Almost all systematic uncertainties included (≅ 60)

- Multiple pseudo-experiments run to check the fit performance (based on the same Fit Model/ templates  $(m_{\ell b})$ )

## Fit performance: Validation via pseudo-experiments

- > BSM fractions: Pseudo-data created modifying the W-helicity fractions. E.g. (5 points):
  - F<sub>0</sub> from 0.5952 to 0.7952
  - F<sub>L</sub> from 0.4030 to 0.2030
  - $F_R = 0.0018$  (constant)
- 60 Pseudo-experiments:
   bin-by-bin Gaussian smearing
   (10x expected statistical uncertainty)
- EXAMPLE F<sub>o</sub> PostFit F, PostFit L<sup>O 0.85</sup> L\_ 0.45 0.8 0.75 0.35 0.7 0.3 0.65 0.25 0.6 0.2 0.55 0.15 1.5 2 2.5 3 4.5 5 1.5 2 2.5 3 5 0.5 3.5 3.5 4.5 Case Case F<sub>R</sub> PostFit س<sup>د 0.05</sup>، 0.04 Measurement 0.03 0.02 0.01 Expected -0.01 Case

- ➢ SM fractions:
  - $F_0 = 0.6952$
  - $F_L = 0.3030$
  - $F_R = 0.0018$

## Fit performance: Systematic Uncertainties

- > Detector uncertainties are implemented as Shape uncertainties (shapeN2), comprising:
  - Lepton Scale Factors
  - PileUp reweighting
  - JER
  - JES
  - b-tagging for c, heavy, light flavour. 8 variations in total

### **Theoretical** uncertainties ('dedicated' samples), comprising:

- $Q^2$  scale (Renormal. & Factor. scales at ME, PS)
- ISR/FSR
- ME-PS matching scale (hdamp)
- Underlying event
- Diagram Subtractions (DS)
- Colour Reconnection:
  - erdON
  - QCDbasedCRTune
  - GluonMoveCRTune
  - colourFlip

Due to low statistics, we applied transformation (smooth+symmetrization) to improve the fit

- Background uncertainties (InN) included for:
  - Single top (10%)
  - W+jets (10%)
  - DY+jets (15%)
  - QCD (20%)
  - VV (20%)
  - $t\bar{t}V$  (30%)
- > PDF uncertainties to be included

Fit results: Expected [2017] (I)

PRELIMINARY





## Fit results: Expected [2017] (II)



## Conclusions

All points considered in this presentation constitute part of extensive work being carried out on the Analysis, which is still **in progress** and towards achieving the best possible sensitivity & precision on the full Runll dataset while using the most performant discriminating variable for this purpose.

- $m_{\ell b}$  important change wrt previous options, performant variable in the extraction of the W-helicity fractions from top events
- BDT and Data-driven method for QCD estimation work properly with new variable choice
- Data/MC good agreement for full Runll in the control plots we have examined for various variables used in the Analysis\*
- Systematic uncertainties almost all added into the fit\*
- Fit stability tested with multiple pseudodata experiments. In all cases, good results; expected fractions obtained\*
- Template fit using multiple regions good performance recovering the expected W-helicity fractions as well as constraining several systematic uncertainties\*
- Combination of 3 years results from 2016-17-18 combined also under study
- Top  $p_T$  reweighting also applied and seems improving Data/MC agreement
- Other studies e.g. binning studies in parallel for further fit improvement\*

\*still under investigation for further possible improvements

Thank you for your attention