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Lovelock Gravity

Lovelock’s theory of gravity is one of the scalar - tensor theories of gravity.

These theories are unique in requiring no extra fundamental fields beyond those that go into
GR, while maintaining the property that the field equations of the theory can be written with
no higher than second derivatives of the metric.

Lovelock asked which set of rank-2 tensors Aµν could satisfy the following two conditions:

i) ∇νA
µν = 0

ii) Aµν = Aνµ

He found that there was a considerably broader class of solutions to the problem, each of
which could serve as a suitable left-hand side in a geometric theory of gravity, without
introducing any extra fundamental degrees of freedom beyond those that exist in the metric.
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Lovelock Gravity

The Lagrangian density from which the field equations are derived is the following:

L =
√
−g
∑
j

αjRj , (1)

where Rj ≡ 1
2j
δµ1ν1...µi=1ηi
α1β1...αjβj

∏αiβi
µiνi

and δ
µ1ν1...µjνj
α1β1...αjβj

≡ j!δµ1

[α1
δν1β1

. . . δ
µj
αj δ

νj

βj ]
• g is the determinant of the metric

• The aj are a set of arbitrary constants

• Rµ
νρσ are the components of the Riemann tensor

• δµν is the Kronecker delta

The tensor Aµν that satisfies properties (i)-(ii) above can be generated from the Lagrangian
density in Eq. (1) by integrating it over a region of D-dimensional space- time to construct an
action S, and then by varying with respect to the inverse metric gµν
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Lovelock Gravity

This gives

δS = δ

∫
Ω
dDxL =

∫
Ω
dDx

√
−gAµνδg

µν +

∫
∂Ω

dD−1x
√
hB (2)

where h is the determinant of the induced metric on ∂Ω and

Aµ
ν = −

∑
j

αj

2j+1
δ
µρ1σ1...ρjσj

να1β1...αjβj

j∏
i=1

Rαiβiρiσi (3)

In dimensions D = 3 and 4 there are two possible terms, corresponding to a constant and to a
term of the form (Riemann)1. In fact, this latter term is exactly the Einstein tensor so that in
D = 4

Aµ
ν = −1

2
α0δ

µ
ν + α1

(
Rµ
ν − 1

2
δµνR

)
(4)
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Lovelock Gravity

Continuing to higher dimensions, it can be shown that when D > 4 Einstein’s equations are
not the most general set of field equations that obeys conditions (i)-(ii). In particular, in the
case D = 5 or 6 the tensor Aµ

ν can contain three terms, with the last being order (Riemann)2

This gives a Lagrangian Density of the form

L =
√
−g [α0 + α1R + α2G] (5)

where
G = R2 − 4RµνR

µν + RµνρσR
µνρσ (6)

is the Gauss Bonnet term.
This tensor provides an alternative set of field equations from those of Einstein, which has no
higher than second derivatives of the metric, and which obeys the required symmetry and
conservation properties in order for it to be set as being proportional to the stress-energy
tensor Tµ

ν
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Einstein - Gauss - Bonnet Gravity

These alternative theories of gravity are of interest partly because string theory predicts that at
the classical level Einstein’s equations are subject to next-to-leading-order corrections that are
typically described by higher-order curvature terms in the action.
The Gauss-Bonnet term is the unique term that is quadratic in the curvature and that results
in second-order field equations.
As an example of how Einstein-Gauss-Bonnet gravity arises, it can be shown that M-theory
compactified on a Calabi - Yau three-fold down to D = 5 takes the effective form

Seff =

∫
d5x

√
−g

(
R +

1

16
c
(I )
2 VIG

)
(7)

where c
(I )
2 VI depends on the details of the Calabi - Yau manifold.

This is just the 5-D Lovelock theory (5)!
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The framework

The vacuum Einstein-Gauss-Bonnet gravity action has the following form,

S =

∫
d4x

√
−g

(
R

2κ2
− 1

2
∂µϕ∂

µϕ− V (ϕ)− 1

2
ξ(ϕ)G

)
, (8)

with R denoting the Ricci scalar, κ = 1
Mp

with Mp being the reduced Planck mass. Moreover,
G denotes the Gauss-Bonnet invariant in dimension-4.
We shall assume that the scalar field is solely time-dependent and that the geometry of
spacetime is described by a flat Friedman - Robertson - Walker (FRW) metric, with line
element,

ds2 = −dt2 + a(t)2
3∑

i=1

(dx i )2 , (9)

where a denotes the scale factor and also for the FRW metric, the Gauss-Bonnet invariant
takes the form G = 24H2(Ḣ + H2).
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The framework

The field equations are derived by varying the gravitational action with respect to the metric
and to the scalar field, and these are

3H2

κ2
=

1

2
ϕ̇2 + V + 12ξ̇H3 , (10)

2Ḣ

κ2
= −ϕ̇2 + 4ξ̈H2 + 8ξ̇HḢ − 4ξ̇H3 , (11)

ϕ̈+ 3Hϕ̇+ V ′ + 12ξ′H2(Ḣ + H2) = 0 . (12)

By imposing the slow-roll conditions Ḣ ≪ H2 , ϕ̈
2 ≪ V , ϕ̈ ≪ 3Hϕ and also the constraint

c2T = 1, where c2T is,

c2T = 1− Qf

2Qt
, (13)

and Qf , F and Qb defined above are Qf = 8(ξ̈ −H ξ̇), Qt = F + Qb
2 , F = 1

κ2 and Qb = −8ξ̇H,
the field equations are simplified as follows,
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The framework

H2 ≃ κ2V

3
, (14)

Ḣ ≃ −1

2
κ2ϕ̇2 , (15)

ϕ̇ ≃ Hξ′

ξ′′
. (16)

The potential of the scalar field and the Gauss-Bonnet scalar coupling function must satisfy
the following constraint differential equation,

V ′

V 2
+

4κ4

3
ξ′ ≃ 0 . (17)
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The framework

The slow-roll indices for Einstein-Gauss-Bonnet models are,

ϵ1 = − Ḣ

H2
, ϵ2 =

ϕ̈

Hϕ̇
, ϵ3 =

Ḟ

2HF
, ϵ4 =

Ė

2HE
, (18)

ϵ5 =
Ḟ + Qa

2HQt
, ϵ6 =

Q̇t

2HQt
,

with F = 1
κ2 , and also E is defined as follows,

E =
F

ϕ̇2

(
ϕ̇2 + 3

(
(Ḟ + Qa)

2

2Qt

)
+ Qc

)
, (19)

where Qa, Qt , Qb and Qc , and Qe are

Qa = −4ξ̇H2, Qb = −8ξ̇H, Qt = F +
Qb

2
, (20)

Qc = 0, Qe = −16ξ̇Ḣ .
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The framework

Employing the simplified equations of motion (14) - (16), the slow-roll indices finally become,

ϵ1 ≃
κ2

2

(
ξ′

ξ′′

)2

, (21)

ϵ2 ≃ 1− ϵ1 −
ξ′ξ′′′

ξ′′2
, (22)

ϵ3 = 0 , (23)

ϵ4 ≃
ξ′

2ξ′′
E ′

E
, (24)

ϵ5 ≃ −ϵ1
λ
, (25)

ϵ6 ≃ ϵ5(1− ϵ1) , (26)
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The framework

Where,

E(ϕ) = 1

κ2

(
1 + 72

ϵ21
λ2

)
, λ(ϕ) =

3

4ξ′′κ2V
. (27)

Regarding the observational indices, we have

nS = 1− 4ϵ1 − 2ϵ2 − 2ϵ4 , (28)

for the spectral index of the primordial scalar perturbations, while the tensor spectral index is,

nT ≃ −2ϵ1

(
1− 1

λ
+

ϵ1
λ

)
. (29)

Finally, the tensor-to-scalar ratio is,
r ≃ 16ϵ1 . (30)
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The Bottom-up Approach

For our general solution it is essential to express every variable as a function of N, which is the
number of e-foldings. To achieve that we write

ξ′(ϕ) =
dN

dϕ

dξ

dN
, (31)

where the prime,′, denotes the differentiation with respect to the scalar field. Using (21), (30)
and

ξ′′

ξ′
=

dN

dϕ
, (32)

we derive

r(N) = 8κ2
(
dϕ

dN

)2

, (33)

which is the general form of the scalar to tensor ratio as a function of the number of e-folds, in
the Einstein-Gauss-Bonnet theory.
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The Bottom-up Approach

The previous expression can be written as,

dN

dϕ
=

2κ
√
2√

r
, (34)

and thus we obtain a useful expression for ξ′ and ξ′′

ξ′ =
dN

dϕ

dξ

dN
=

2κ
√
2√

r

dξ

dN
, (35)

ξ′′ =
8κ2

r

d2ξ

dN2
− 4κ2

r2
dr

dN

dξ

dN
. (36)

Using the previous equation and the fact that ξ′′ = dN
dϕ ξ

′ we have

ξ′′ =
8κ2

r

d2ξ

dN2
− 4κ2

r2
dr

dN

dξ

dN
=

2κ
√
2√

r

2κ
√
2√

r

dξ

dN
=

8κ2

r

dξ

dN
. (37)
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The Bottom-up Approach

From equation (37) we derive the differential equation of the coupling function with respect to
the number of e-folds,

d2ξ

dN2
−
(

1

2r

dr

dN
+ 1

)
dξ

dN
= 0, (38)

and its solution is,

ξ(N) = C1

∫ √
r(N)eNdN + C2. (39)

From equation (17), the potential of the scalar field takes the following form

1

V 2

dV

dϕ
+

4κ4

3

dξ

dϕ
= 0. (40)

Combining equations (40), (37) we derive to

1

V 2

dN

dϕ

dV

dN
+

4κ4

3

dN

dϕ

dξ

dN
= 0. (41)
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The Bottom-up Approach

Equation (41) is a differential equation of the potential of the scalar field with respect to the
number of e-foldings, N. Its solution is

V (N) =
3

4κ4
1

ξ(N)
. (42)

In this formalism we are able to derive the scalar coupling function, the potential of the scalar
field and the spectral indices nS , nT for various expressions of the tensor-to-scalar ration as a
function of the number of e-folds.
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Phenomenology of Various Models

In our study the value of the integration constant C2 did not affect any of the calculated
indices, and so we kept C2 = 1 in every model.

Most of our models are of the form of r = δ/Nd where d > 0.

By varying the parameter δ, so that the tensor-to-scalar ratio is within the the Planck 2018
constraints r < 0.056, we solved the equation nS(C1) = 0.9649± 0.0042 for C2 = 1. For each
set of the parameters δ, and nS there are three different C1, which verify the equation and
each of these gives a different nT : a negative one (about -0.04) and two positive (about 0.04
and 0.92) ones.

The last of our models is an exponential model of the form of r = ae−bN .
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Phenomenology of the r = δ/N model

The first model that we used was the r = δ/N.
From (39) it follows that the scalar coupling function ξ takes the form,

ξ = 2C1

√
δeN D(

√
N) + C2, (43)

Where D(x) is the Dawson integral, defined as D(x) = exp (−x2)
∫ x
0 exp (t2)dt. From (42) it

follows that the potential of the scalar field V takes the form,

V (N) =
3

4κ4
(
2C1 exp (N)

√
δD
(√

N
)
+ C2

) , (44)

To calculate the scalar spectral index, the corresponding value of the scalar to tensor ratio and
the tensor spectral index, we need to calculate the slow roll indices. To do that we use the
function λ(N) (27), which for this model is,

λ(N) =
C2

8C1

√
δ

N
e−N +

δD(
√
N)

4
√
N

. (45)
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Phenomenology of the r = δ/N model

Using (29) the tensor spectral index takes the form,

nT = −
2C2δ

√
N + C1

√
δ exp (N)

(
δ − 16N4δ

√
N D(

√
N)
)

16C2N
3
2 + 32C1

√
δ exp (N)N

3
2 D(

√
N)

. (46)

The upper limit of the δ parameter, in order the tensor-to-scalar ratio r to comply with 2018
Planck constrains, is 3.36.

Table: Different values for δ and nS and the corresponding nT and r

δ r nS nT
0.001 1.66667 · 10−5 0.965 0.964288

0.05 0.000833333 0.965 0.964191

0.1 0.00166667 0.965 0.039063

1 0.016667 0.961 0.037994

3 0.05 0.969 0.960455
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Phenomenology of the r = δ/N model

Using the data presented in the table 1 we constructed the likelihood curve.

(a) Likelihood curves of the r = δ/N model

(b) The h2 - scaled primordial gravitational
waves energy spectrum for the Model I, versus
the sensitivity curves of future primordial
gravitational waves experiments.
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Phenomenology of the r = δ/N2 model

The next model we consider is r = δ
N2 .

The upper limit of the δ parameter, in order the tensor-to-scalar ratio r to comply with 2018
Planck constrains, is 201.6.
The next table shows some of the values of the observational indices we calculated to make
the likelihood curve of this model, and the likelihood curve itself

Table: Different values for δ and nS and the corresponding nT and r

δ r nS nT
1 0.000277778 0.961 0.944884

5 0.00138889 0.962 0.945287

10 0.00277778 0.964 0.946191

15 0.00416667 0.967 0.947627

20 0.00555556 0.968 0.947996

22 / 29



Phenomenology of the r = δ/N2 model

From the previous table we can construct the next diagrams.

(a) Likelihood curves of the r = δ/N2 model

(b) The h2 - scaled primordial gravitational
waves energy spectrum for the Model II, versus
the sensitivity curves of future primordial
gravitational waves experiments.

23 / 29



Phenomenology of the r = δ/
√
N model

Extrapolating our models to non-integer powers d we consider the model r = δ√
N
.

The upper limit of the δ parameter, in order the tensor-to-scalar ratio r to comply with 2018
Planck constrains, is 0.433774.
Some of the different values of the parameter δ, r , the spectral index nS and nT for this
model are presented in the table:

Table: Different values for δ and nS and the corresponding nT and r for Model V

δ r nS nT
0.01 0.00129099 0.961 0.970617

0.02 0.00258199 0.962 0.970994

0.03 0.00387298 0.964 0.971902

0.04 0.00516398 0.966 0.972808

0.06 0.00774597 0.968 0.97356
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Phenomenology of the r = δ/
√
N model

Using the above values we constructed the Likelihood curves of this model.

(a) Likelihood curves of the r = δ/
√
N model

(b) The h2 - scaled primordial gravitational
waves energy spectrum for the Model V, versus
the sensitivity curves of future primordial
gravitational waves experiments.
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Phenomenology of the Exponential Model

The last model we studied differs from the previous ones as the scalar to tensor ratio is not of
the form of r = δ/Nd with d > 0 but of the form of r = ae−bN , where a,b are two constant
parameters.
In our study the variation of the parameter a affects the value of the scalar to tensor ratio
while the variation of the parameter b affects the value of the tensor spectral index.
A set of values of the (nS ,r ,nT ) with different a,b is shown below.

Table: Different values for a, b and nS and the corresponding nT and r

a b r nS nT
100000000 0.4 0.00377513 0.961 0.538172

100000 0.3 0.001523 0.961 0.658666

100000000 0.43 0.00062402 0.966 0.501779

100000 0.3 0.001523 0.966 0.603673

100000000 0.4 0.00377513 0.969 0.543781
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Phenomenology of the Exponential Model

With the values of the above table we construct the diagrams below

(a) Likelihood curves of the r = ae−bN model

(b) The h2 - scaled primordial gravitational
waves energy spectrum for the Exponential
Model , versus the sensitivity curves of future
primordial gravitational waves experiments.
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Conclusions

• We thoroughly studied several models of interest and we showed that the compatibility
with the Planck 2018 data can be achieved for a general range of the free parameters.

• Most of the models lead to a blue-tilted tensor spectral index and as we showed, the
energy spectrum of the inflationary primordial gravitational waves can be detectable by
most of the future experiments on gravitational waves.

• For most of the models, the tensor-to-scalar ratio can take significantly smaller values
than most of the R2-like scalar field models.
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