Studies for the measurement of the ZZ -> 212v cross section in ATLAS and for the search for aQGCs

S. Tzamarias, K. Kordas, A. Tsiamis, D. Fakoudis: (AUTH)

D. Sampsonidou: (SJTU, TDLI),

THESSALONIKI

INTRODUCTION

- Production of boson pairs provide an opportunity to study the electroweak sector by looking for deviations from predicted total and differential cross-sections, that could be an indication of new physics.
- ZZ produced via :
 - quark-antiquark $(q\bar{q})$ annihilation
 - gluon-gluon fusion (gg) via a quark loop.
 - Higgs boson decay.
- 2 dominant decay modes
 - 4 leptons
 - Cleaner Signal
 - Small Branching Ratio
 - 2 leptons 2 neutrinos
 - Missing energy due neutrinos -> Not so clean Signal
 - Bigger Branching Ratio.

• In high $\sqrt{\hat{s}}$, results from ZZ->212v could improve the sensitivity to new physics, with respect to ZZ->41 alone.

- Our analysis focus on 2 leptons and 2 neutrinos decay channel.
- ZZ production also useful for:
 - High order calculations of perturbative Quantum chromodynamics
 - pp->ZZ production is a background to the SM Higgs boson process and to many searches for physics beyond the SM.

VECTOR BOSON SCATTERING (VBS)

- Self interactions between electroweak vector bosons:
 - Only EWK vertices involved.
 - 3 or 4 gauge bosons at a single vertex (triple and quartic gauge couplings, respectively).
- VBS is initiated by quarks from the colliding protons; both quarks radiate vector bosons (V=W, Z) which then interact.
 - The vector bosons decay in fermions (212v,1111)
 - two high energy jets, in a forward-backward topology, with two vector bosons in between ("VBS topology").
 - Events with QCD vertices can also result in the VBS topology.
- Pure EWK production :
 - Probes the mechanism of electroweak symmetry breaking (EWSB) in the Standard Model (SM).

QCD vertices

EWK vertices

DOMINANT BACKGROUNDS IN ZZ->212v CHANNEL

• WZ - > 31

- Consists of events where one of the 3 leptons is not detected. Genuine E_T^{miss} from W neutrino
- Large contribution in the Signal Region.
- WW/tt /Wt/Ztt (non resonant)
 - contribute with 2 leptons from different mother particles. Genuine E_T^{miss} from neutrinos.
 - relative probability at production is $ee:\mu\mu:e\mu = 1:1:2$.
- Z->l+l- +jets
 - Contribute to SR due to fake E_T^{miss} .
- Other contributions (41, VVV, W+jets, ttV)
 - Small contributions

SIGNAL REGION SELECTION

• Goal: Find an optimal set of kinematic requirements (cuts) that maximizes significance.

- $S = \sqrt{2\left((S+B)\ln\left[1+\frac{S}{B}\right]-S\right)}$
- Cut and Count method:
 - Use one variable at a time to define the cut at a certain point where significance starts to drop.
 - This way we ignore any correlations between the variables.
- Grid search : Computationally demanding .
 - Need for an optimization technique.
- Several Classification algorithms, such as Boosted Decision Trees (BDTs) and Artificial Neural Networks have been deployed for separating signal from background.
 - Both methods result in a classifier score. Signal region is defined by a cut on the score(not the original kinematic variables)
- In our current analysis we employ a Genetic Algorithm , for searching the optimal set of square cuts.

OPTIMIZATION USING GENETIC ALGORITHM

Optimization

- GA is search heuristic (rather than algorithm) inspired by Darwin's natural selection, based on the concept of survival of the fittest.
- Each solution to the problem (set of cut values) are represented as a vector of numbers, which is referred as individual.
- Each individual has a score (significance for our case), indicating how fit an individual is.

Population

Initialization: Initialize several individuals with random cut values

C	M2Lep_min	M2Lep_max	met_tst	dLepR	dMetZPhi	met_signif	Individual(Chromosome)
0	76.000031	106.000000	106.804773	2.506266	2.348980	5.195809 -	
0	76.000031	106.000000	101.661088	1.238401	0.339717	9.358020	\mathbf{X}
0	76.000031	106.000000	108.451259	3.528266	3.111594	8.679388	Gene/Allele
0	89.659995	106.000000	114.686104	0.199380	1.576826	13.539001	$\langle \rangle$
0	78.798827	93.598205	105.439437	3.703556	2.037331	9.654251	
0	79.280488	93.244679	106.526191	4.107398	0.573055	9.745115	$\langle \rangle$
0	76.000031	106.000000	112.901515	3.640318	1.996986	8.086429	$\langle \rangle$
0	79.288658	106.000000	111.628699	0.619006	1.698662	9.068645	\searrow
						Cuts f	or SR event Selection Optimi

Population Initialization

- At each generation(loop):
 - We create new individuals (offsprings) by combining 2 individuals in the population. Weather the new individual is produced or not is controlled by a certain probability (crossover rate).
 - The selection of the individuals to be combined is proportional to its fitness (significance).
 - Crossover-> Combination of the genes of the 2 individuals, to produce a new individual(offspring)

Indiv	idual 1	In	dividual 2	Offspring				
M2Lep_min	82.319510	M2Lep_min	76.000031	M2Lep_min	76.000031			
M2Lep_max	89.861942	M2Lep_max	106.00000	M2Lep_max	106.000000			
met_tst	189.573846	+ met_tst	100.125271	met_tst	189.573846			
dLepR	2.496918	dLepR	0.539875	dLepR	2.496918			
dMetZPhi	0.173729	dMetZPhi	2.269436	dNetZPhi	2.269436			
met signif	7.839628	met_signif	9.117347	met_signif	7.839628			

- Apply *mutation*. Each individual in the population mutates with a certainmutation rate. Each gene mutates with a certain *mutation probability*.
- Repeat for several generations
- The individual with the best score among all generations is returned as the solution.

Roulette Selection

Individu	al	Mutated	Individual
M2Lep_min	82.319510	M2Lep_min	76.000031
M2Lep_max	89.861942	M2Lep_max	89.861942
met_tst	189.573846	met_tst	189.573846
dLepR	2.496918	dLepR	2.496918
dMetZPhi	0.173729	dMetZPhi	0.173729
met_signif	7.839628	met_signif	9.922509

SIGNAL REGION OPTIMIZATION RESULTS (INCLUSIVE)

Generations	population size	crossover Rate	mutation rate	mutation probability
30	100	0.6	0.5	0.4

GA hyperparameters

	all	ee	mm
signal	1923.2±15.87	911.37±10.52	1011.83±11.89
wz	917.01±8.33	439.78±6.27	477.24±5.48
Zjets	159.41±19.47	83.2±15.07	76.21±12.32
Non-Resonant	201.63±3.42	101.93±2.46	99.7±2.38
Other	59.06±2.27	27.97±1.79	31.09±1.39
Signal	1923.2±15.87	911.37±10.52	1011.83±10.52
Background	1337.12±21.57	652.88±16.61	684.24±13.77
Significance	44.33	30.18	32.49

0.2

SIGNAL REGION OPTIMIZATION RESULTS (VBS)

Generations	population	crossover	mutation	mutation
	size	Rate	rate	probability
30	100	0.6	0.5	0.4

GA hyperparameters

ZZ+2jets production:			all	ee	mm	1.55 -					~~	\sim	
VBS EWK Region		EWK	17.39±0.12	8.62±0.09	8.77±0.09	1.50 -				/			
$84.72 < M_{ll} < 96.07 GeV$		QCD WZ	19.57±0.59	9.74±0.44	9.83±0.4	a 1.45 -							
M _{jj} >583.77			39.06±0.56	19.03±0.45	20.03±0.34	cance							
Δη _{<i>jj</i>} >2.05		Zjets	15.3±7.16	2.49±5.07	12.81±5.06	iji 1.40 - is			\smile ,				
<i>p_T</i> (<i>leading jet</i>)>47.00		Non-resonant	40.82±1.35	19.6 ± 0.95	21.21±0.96	1.35 -	Г						
<i>p_T</i> (<i>sub_leading jet</i>)>45.08		Other	21.12±0.61	10.5±0.45	10.62 ± 0.41	1.30 -							
$E_T^{miss}_{significance} > 8.82$		Signal	17.39±0.12	8.62±0.09	8.77±0.09								
$E_T^{miss} > 106.34$		Background	116.3±7.36	51.63±5.22	64.67±5.19	1.25 -	/						,
b jet veto		Significance	1.57	1.17	1.07		0	5	10 Ge	15 enerations	20	25	30

BACKGROUND ESTIMATE BY A SIMULTANEOUS FIT

- To calculate background contributions from different sources :
 - We define Control Regions, which in principle are mostly populated by one source of background, but each region is a different mixture of the various event types(ZZ->212v,WW,WZ,Zjets etc.).
 - **3ICR** : Consists of 3 leptons. Mostly populated by WZ events
 - emCR : Consists of different flavor leptons. Mostly populated by non-resonant events (WW,tt~, etc.).
 - Zjets CR: Inverse $E_T^{miss}_{significance}$ cut. Mostly populated by Zjets and non-resonant events.
 - Define scaling factors (for signal and Background), to correct the MC predictions to match the observations at the various regions.
 - Simultaneous fit in all regions (Signal and Control).
 - We do not use just the event counts, but distributions of kinematic variables (histograms).
- For demonstration purposes, we perform a fit, using the expectations from the MC contributions as Data ("Asimov dataset")
 - This way we can study the expected uncertainty on the estimation of the scaling factors.
- Consider 2 sources of theory uncertainties:
 - PDF uncertainties
 - Renormalization and Factorization Scale uncertainties

DEFINITION OF SIGNAL AND CONTROL REGIONS

ZZ+2jets production: VBS EWK Region

 $76 < M_{ll} < 106 \, {\rm GeV}$

 $E_T^{miss}_{significance} > 10$ $p_T(leading jet) > 45 \text{ GeV}$

 $p_T(leading jet) > 40 \text{ GeV}$

 $\Delta \eta_{jj} > 2$ $E_T^{miss} > 70 \text{ GeV}$ $m_{jj} > 550$ bjet veto

- Control Regions defined with the same phase space as the Signal Region,
 - *3ICR*: 3 leptons in the final state
 - *emCR* : 2 opposite flavor leptons in the final state
 - Zjets : Invert $E_T^{miss}_{significance}$ < 9 for Inclusive phase space and $E_T^{miss}_{significance}$ < 10 for VBS phase space.
- For VBS phase space we define an extra control region, a QCD enhanced region, by requiring $100 < m_{ii} < 550$.

SIMULTANEOUS FIT RESULTS (INCLUSIVE)

SIMULTANEOUS FIT RESULTS (VBS)

NO EXPECTATION OF VBS EWK MEASUREMENT. EFT FOR NEW PHYSICS.

- Due to low statistics, we do not expect an observation EWK-only production in the VBS phase space.
- This is already established by ATLAS (>5σ) by combining ZZ->4l and ZZ->2l2v: <u>https://arxiv.org/pdf/2004.10612.pdf</u>.
- EWK production cross section is in agreement with the SM.
- We want to check if the experimental data are indicating the presence of new physics.
- The Effective Field Theory (EFT) is the natural way to expand the SM such that the gauge symmetries are respected
 - Provides guidance for searching new physics.
- Λ : energy scale of the new physics.
- O_i: dim 6 and 8 operators
- c_i f_i: dimensionless coefficients "Wilson coefficients"

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum \frac{f_i O_i}{\Lambda^4}$$

- Dimension-8 operators are dominant in anomalous QGC couplings.
- The dimension-8 operators that describe the pure anomalous QGC effects can be divided into three categories:
 - Longitudinal (FS) : FS0,FS1,FS2
 - Transverse(FT) : FT0, FT1, FT2, FT5, FT6, FT7, FT8, FT9
 - Mixed (FM) : FM1, FM2, FM3, FM4, FM5, FM7

15

limits on FT0. Picture obtained by : https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

EFT SAMPLE PRODUCTION AND STUDIES

- We use the Madgraph5 generator and the Eboli Gonzales models for the generation of EWK EFT ZZjj -> 212vjj samples.
 - MadGraph + Pythia
 - Process : p p -> ZZ , QCD=0
 - ZZ -> $e^+e^- v_{\tau}v_{\tau}^{-} j j$ (Decay using madspin module)
 - N_events = 20k
- We study :
 - The Decomposition technique
 - The effect of EFT operators at various distributions

DECOMPOSITION

• The EFT cross section can be split in 4 terms:

$$\left| \mathcal{A}_{SM} + \sum_{i} \frac{f_{i}}{\Lambda^{4}} \mathcal{A}_{i} \right|^{2} = \left| \mathcal{A}_{SM} \right|^{2} + \sum_{i} 2 \frac{f_{i}}{\Lambda^{4}} \mathcal{R}e(\mathcal{A}_{i}^{*}\mathcal{A}_{SM}) + \sum_{i} \frac{f_{i}^{2}}{\Lambda^{8}} \left| \mathcal{A}_{i} \right|^{2} + \sum_{i,j,i \neq j} 2 \frac{f_{i}f_{j}}{\Lambda^{8}} \mathcal{R}e(\mathcal{A}_{i}^{*}\mathcal{A}_{j})$$

$$\text{Interference SM-EFT} \qquad \text{Pure EFT (quadratic term)} \qquad \text{EFT cross term}$$

- Instead of producing the total process, we can produce the SM, interference, quadratic and cross terms (for 2 or more active EFT operators)
- Useful for rescaling these samples, for different values of coefficients.
 - This dramatically reduces computational time

RESULTS FOR FTO OPERATOR

pT_Z (GeV)

- Full and decomposed are within statistical • agreement,
 - FULL having consistently lower yields than Decomposed.
 - Madgraph experts trust the decomposition procedure, so we used these samples to examine the differential cross section.
- In high pTZ values, SM+FT0 is enhanced • compared to SM.
 - effect increasing with higher values of the operator.
 - Assuming that only one operator contributes at a time

•

we can set limits of the contribution of this operator, by comparing it with the SM predictions for various sensitive variables 18 (pTZ, mjj, MET etc.)

SUMMARY

- Employed a genetic algorithm for optimizing signal region in both inclusive and VBS phase space
- Performed a demonstration of a simultaneous fit for estimating the expected uncertainty of the scaling factors for Signal and Background, using MC expectation as Data (Asimov Dataset)
- Validated the decomposition technique for FT0 EFT operator, and the effect of the FT0 EFT operator at high ptZ values.

THANK YOU

REFERENCES

- Observation of electroweak production of two jets and a Z-boson pair with the ATLAS detector at the LHC
- Measurement of ZZ production in the $\ell\ell\nu\nu$ final state with the ATLAS detector in pp collisions at $s\sqrt{=13}$ TeV
- <u>Practical Statistics for the LHC</u>
- <u>Genetic Algorithms Introduction</u> :https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm

SCALE UNCERTAINTIES

- Missing Higher orders in perturbation QCD calculations are estimated by performing scale variations, i.e. varying the renormalization and factorization scales by a factor of 2.
 - 9 point variation: { $\mu_{\rm R}$, $\mu_{\rm F}$ } \otimes {0.5,0.5},{0.5,1},{1,0.5},{1,1},{2,1},{1,2},{2,2},{2,0.5},{0.5,2}
 - 7 point variation: { μ_R , μ_F } \otimes {0.5,0.5}, {0.5,1}, {1,0.5}, {1,1}, {2,1}, {1,2}, {2,2}

3 point variation: $\{\mu_R, \mu_F\} \otimes \{0.5, 0.5\}, \{1, 1\}, \{2, 2\}$

- Calculate estimated yields for each variation by replacing weight_gen with the respective weight variation ({ μ_R , μ_F } ={1,1} corresponds to the nominal weight_gen)
- Calculate the differences between the nominal value and each variation
 - Max_error=max[Yields($\mu_{R,i}, \mu_{F,i}$)-Yields($\mu_{R,0}, \mu_{F,0}$)]
 - Min_error=min[Yields($\mu_{R,i}, \mu_{F,i}$)-Yields($\mu_{R,0}, \mu_{F,0}$)]
 - Where Yields ($\mu_{R,i}, \mu_{F,i}$): Yields for ith scale variation, Yields ($\mu_{R,0}, \mu_{F,0}$): Yields for the central scale

PDF UNCERTAINTIES

- PDF uncertainties: There are several sources of uncertainty that affect the determination of PDFs:
 - Experimental uncertainties entering the datasets used in the PDF fits => encapsulated in the PDF error eigensets
 - Uncertainty on functional form used in the PDF fits -> encapsulated in the PDF error eigensets
 - Missing Higher Order Uncertainties -> the scale variations are supposed to give an estimate of this uncertainty
 - (other theory uncertainties: flavour scheme, nuclear effects, ... are usually not taken into account, but some of these effects (e.g. flavour scheme) are probed when comparing different PDF sets)
- For NNPDF sets:
 - ensemble of PDFs is provided.
 - the used value is the mean of all the ensembles
 - the uncertainty is the standard deviation .
- Calculate estimated yields for each variation again by replacing weight_gen with the respective weight variation
 - X0 is the mean of all X1..X100
 - The uncertainty is calculated by:

$$\frac{\sum (X_{\iota} - X_{0})^{2}}{N}$$

SAMPLE PRODUCTION

- Samples produced on lxplus, using 21.6.57 AthGeneration version
- Job option obtained by ZZ->41 group (Alexandros Marantis, Ioannis Maznas)
 - MadGraph + pythia
 - Process : p p -> ZZ , QCD=0
 - ZZ -> $e^+e^- v_\tau v \sim_\tau j j$ (Decay using madspin)
- Rivet for analysis
 - (Script obtained by previous VBS analysis, and modified to run for Rivet version 3.1.2)
 - 21.6.67 AthGeneration version was used to compile and run Rivet analysis.
- $N_{events} = 20k$.
 - Due to some errors in production, multiple INT samples were produced for FT8 and FT9.
 - FT8 : 3 samples of 5k events (15k total)
 - FT9: 40 samples of 500 events (20k total)
- drjj cut applied at generation level to avoid singularities.
 - For FT0,1,2,5,6,7 drjj > >0.05
 - For FT8 and FT9 drjj > 0.1