Higgs boson pair production searches in ATLAS

Panagiotis Bellos

39th Conference on Recent Developments in High Energy Physics and Cosmology

Exclusive Higgs

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

The Higgs potential

- Higgs potential
 - Vacuum expectation value υ & Higgs self coupling λ determine potential shape
 - Metastable universe may decay to "true" min
 - Various cosmological models predict consequences

 $\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + i\overline{\psi}\gamma^{\mu}\mathcal{D}_{\mu}\psi + h.c. + \psi; y; y; \psi; \phi + h.c. + \left|\gamma^{\mu}\mathcal{D}_{\mu}\phi\right|^{2} - V(\phi)$ Panagiotis Bellos 39th Conference on Recent Developments in High Energy Physics and Cosmology

HH production

UNIVERSITY^{OF} BIRMINGHAM

- **Several Di-Higgs production mechanisms**
 - ggF (~31 fb) and VBF (~1.7 fb) at 13 TeV
 - Total HH XS (\sim 33 fb) and single H (\sim 55 pb)

Panagiotis Bellos

C_{2V}

39th Conference on Recent Developments in High Energy Physics and Cosmology

UNIVERSITY OF BIRMINGHAM

BSM

- BSM physics can appear via
 - Any discrepancy in coupling values wrt SM
 - New resonances
 - Anomalous couplings
- BSM models with high mass resonances decaying to HH
 - 2HDM
 - Radions
 - hMSSM
 - Warped extra dimensions
 - Composite Higgs
- New couplings in the EFT framework

Channel	Lumi (fb ⁻¹)	Reference							
4b	139	Phys. Rev. D 105, 092002 ATLAS-CONF-2022-035 JHEP 07 (2020) 108			bb	ww	ττ	ZZ	۱ ۱
2b2 τ	139	ATLAS-CONF-2021-030 JHEP 11 (2020) 163		bb	34%				
2b2γ	139	arXiv:2112.11876		ww	25%	4.6%			
2blvlv	139	arXiv:1908.0676			7.00/		0.00%		
2b2W	139	Phys. Lett. B 801 (2020) 135145	-		7.3%	- 2.1% /	0.39%		
comb	139	ATLAS-CONF-2021-052		ZZ	3.1%	1.1%	0.33%	0.069%	
4W	36	JHEP 05 (2019) 124		ΥY	0.26%	0.10%	0.028%	0.012%	0.00
2W2γ	36	EPJC 78 (2018) 1007	-						

bbττ

- Considerable branching ratio (7%)
- Moderate bkg contamination
- Challenging had τ reco and triggering
- Neutrinos in τ decays
- hadhad & lephad channels
- **Di-Higgs according to event topology**
- Boosted & Resolved
- Current bbtt is inclusive

b-tagging

Panagiotis Bellos

39th Conference on Recent Developments in High Energy Physics and Cosmology

UNIVERSITY^{OF} BIRMINGHAM

tau-jets

UNIVERSITY^{OF} BIRMINGHAM

Tau

- Very collimated products
- Displaced secondary vertex

 10^{4}

Panagiotis Bellos

Bkgs

Several bkg contributions

- Top quark : MC shape Fit norm
- $Z \rightarrow \tau \tau$ + heavy flavour: MC shape Z+HFjets CR norm
- Multi-jet (fake) Data-driven fake-factor method
- tt (fake): Data-driven mis-ID efficiency SF to MC
- Single Higgs : MC
- Others : MC
- Very small signal to bkg ratio for SM HH
 - lephad SLT $\rightarrow 6$ / 100k
 - hephad LTT \rightarrow 1.5 / 7k
 - hadhad \rightarrow 5.5 / 10k

Multivariate analysis

Panagiotis Bellos

39th Conference on Recent Developments in High Energy Physics and Cosmology

14

Results

- Excess around 1 TeV
- Local significance = 3.0σ
- Global significance = 2.0σ
- SM HH limit
- 3.87 @ 95% CL
- New no-resonant analysis in progress

		Observed	-2σ	-1σ	Expected	+1 σ	+2 σ
Combined	$\sigma_{ m ggF+VBF}$ [fb] $\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	135 4.65	61.3 2.08	82.3 2.79	114 3.87	159 5.39	213 7.22

ATLAS-CONF-2021-030

Panagiotis Bellos

39th Conference on Recent Developments in High Energy Physics and Cosmology

UNIVERSITY^{OF} BIRMINGHAM

Systematics

Uncertainty source	Non-resonant HH	300 GeV	Resonant $X \rightarrow HH$ 500 GeV	1000 GeV
Data statistical	81%	75%	89%	88%
Systematic	59%	66%	46%	48%
$t\bar{t}$ and Z + HF normalisations	4%	15%	3%	3%
MC statistical	28%	44%	33%	18%
Experimental				
Jet and $E_{\rm T}^{\rm miss}$	7%	28%	5%	3%
<i>b</i> -jet tagging	3%	6%	3%	3%
$ au_{ m had-vis}$	5%	13%	3%	7%
Electrons and muons	2%	3%	2%	1%
Luminosity and pileup	3%	2%	2%	5%
Theoretical and modelling				
Fake- $\tau_{had-vis}$	9%	22%	8%	7%
Top-quark	24%	17%	15%	8%
$Z(\rightarrow \tau \tau) + HF$	9%	17%	9%	15%
Single Higgs boson	29%	2%	15%	14%
Other backgrounds	3%	2%	5%	3%
Signal	5%	15%	13%	34%

Combined results

Panagiotis Bellos

Combined results

UNIVERSITY OF BIRMINGHAM

• HL-HLC

- 3000 fb⁻¹ ATLAS + CMS combination
- HH observation with 4σ significance
- $0.1 < \kappa_{\lambda} < 2.3$ @ 95% CL

	Statistical-only		Statistical	+ Systematic	
	ATLAS	CMS	ATLAS	CMS	
$HH \to b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
$HH \to b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4	
$HH \to b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Combined		Combined		
arXiv:1902.00134v2	4.5		4.0		

Summary

20

- Di-Higgs studies are essential
- Uncover Higgs potential shape
- Measure $\,\lambda$ and $c_{_{2\nu}}$ Higgs couplings
- Search for BSM resonances
- Probe BSM effects

bbττ one of the most sensitive channels

- Resonant analysis recently completed
- A 3.0(2.0) σ excess found around 1 TeV
- Non resonant analysis is in progress

• Future prospects

- More channels, production modes, topologies, etc
- Combination
- Run 3 & HL-LHC

