

Recent results in the search for resonant $W^{\pm} Z \rightarrow V U P O U P$

On behalf of the ATLAS X->WZ->lvll analysis team

Tsopoulou Maria - Evanthia Aristotle University of Thessaloniki, Greece

16/06/2022, HEP2022 Conference

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

«This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project "Strengthening Human Resources Research Potential via Doctorate Research" (MIS-5000432), implemented by the State Scholarships Foundation (IKY)»

Support Documents

- Paper: <u>https://cds.cern.ch/record/2808353</u>
- Analysis framework: framework migrated from the 36.1fb⁻¹ analysis <u>AODNtupleUtility</u> Xchecked with <u>ELCore framework</u> using <u>EventLoop</u> package
- Statistical Framework: Resonance Finder (<u>RooFit</u> and <u>RooStats</u> based)

Overview

- 1. Introduction, Motivation and Analysis Strategy
- 2. Background and Signal Samples
 - a. SM Monte Carlo background Samples
 - b. Signals
- 3. Object Reconstruction
- 4. Event selection and Analysis strategy
 - a. Inclusive Region Event Selection
 - b. Control distributions of selected W[±]Z events
 - c. Signal and Control Regions
- 5. Signal Optimization
 - a. Drell-Yan selection
 - b. Artificial Neural Network VBF selection
- 6. Background Estimation
- 7. Statistical Treatment
- 8. Alternative variables
- 9. Setting limits with m_{τ}^{WZ}
- 10. Comparison plots for limits with alternative variables

1. Introduction and Motivation

- Hierarchy and naturalness problems due to the low mass of the SM Higgs boson.
- Need beyond SM physics to explain such problems.
- Resonance searches: the simplest way to discover new particles.
- These searches are Model-independent probe to new physics.

Fig: LO Feynman diagram for resonant WZ process at the LHC

- Resonance benchmark:
 - Heavy vector Triplets (simplified Lagrangian) produced either by qqF (Drell-Yan category) or VBF
 - Georgi Machacek (GM) Higgs Triplet Model produced via VBF (fermiophobic fiveplet H5 that couples nearly exclusively with vector bosons)

1. Introduction and Analysis strategy

- The present analysis extends the search for resonant WZ production in the lvll (I = e, μ) decay using 139.7± 1.7 % fb⁻¹ of data. Previous results with 36fb⁻¹ can be found <u>here</u>
- We look into fully leptonic decay mode:
 - Small branching fractions
 - Clean signature, low background
 - Good sensitivity to low mass

Experimental signature:

- 3 hight p_{τ} isolated leptons
- Missing transverse energy (E_{T}^{miss})

Two models used as benchmarks

- HVT produced via qq fusion or Vector Boson Fusion
- Charged Higgs H₅[±] from GM model produced via VBF

Analysis strategy

- 1) VBF Artificial Neural Network signal region: A cut on the Artificial Neural Network discriminant trained using H5 signals is used to define the signal. This signal region is used to compare H5/VBF HVT signals with data & set limits.
- 2) VBF cut-based signal region: Defined using the typical VBF topology cuts -> as a cross-check for the ANN analysis of VBF HVT and used to produce limits with alternative variables
- 3) Drell-Yan signal region: compare data with the W' produced via quark-antiquark annihilation predicted by HVT & set limits

2. Background and Signal samples a. SM Monte Carlo background Samples

DSID	Process	Generators	PDF	
364253	$WZ \rightarrow \ell \nu \ell \ell$	Sherpa 2.2.2	NNPDF30NNLO	
361292	$WZ \rightarrow \ell \nu \ell \ell$	Madgraph+Pythia8	A14NNPDF23LO	
361293	$WZ \rightarrow \ell \nu \ell \ell$	Madgraph+Pythia8	A14NNPDF23LO	
361601	$WZ \to \ell \nu \ell \ell$	Powheg+Pythia8	NLO CT10	
364739	WZjj + tZ: $WZ \rightarrow e^- \nu \mu \mu$, $WZ \rightarrow \mu^- \nu e e$	MadGraph+Pythia8	NNPDF30NNLO	
364740	WZjj + tZ: $WZ \rightarrow e^+ \nu \mu \mu, WZ \rightarrow \mu^+ \nu e e$	MadGraph+Pythia8	NNPDF30NNLO	
364741	WZjj + tZ: $WZ \rightarrow \mu^- \nu \mu \mu, WZ \rightarrow e^- \nu e e$	MadGraph+Pythia8	NNPDF30NNLO	
364742	WZ EW: $WZ \rightarrow \mu^+ \nu \mu \mu$, $WZ \rightarrow e^+ \nu e e$	MadGraph+Pythia8	NNPDF30NNLO	
364250	ZZ QCD: <i>ℓℓℓℓ</i>	Sherpa 2.2.2	NNPDF30NNLO	
364254	ZZ QCD: <i>llvv</i>	Sherpa 2.2.2	NNPDF30NNLO	
364283	ZZ EWK: $\ell\ell\ell\ell$	Sherpa 2.2.2	NNPDF30NNLO	
345705	$gg \rightarrow \ell \ell \ell \ell \ell \ (m_{4\ell} < 130)$	Sherpa 2.2.2	NNPDF30NNLO	
345706	$gg \rightarrow \ell \ell \ell \ell \ell \ (m_{4\ell} > 130)$	Sherpa 2.2.2	NNPDF30NNLO	
361603	$q\bar{q} \rightarrow ZZ \rightarrow \ell\ell\ell\ell$	Powheg+Pythia8	NLO CT10	
361604	$q\bar{q} \rightarrow ZZ \rightarrow \ell\ell\nu\nu$	Powheg+Pythia8	NLO CT10	
364100-364141	Z+jets	Sherpa 2.2.1	NNPDF30NNLO	
361106	$Z \rightarrow ee$	Powheg+Pythia8	CTEQ6L1	
361107	$Z ightarrow \mu \mu$	Powheg+Pythia8	CTEQ6L1	
361108	$Z \rightarrow \tau \tau$	Powheg+Pythia8	CTEQ6L1	
364500-364509	NLO $Z\gamma$	Sherpa 2.2.2	NNPDF30NNLO	
366140-364149	LO Ζγ	Sherpa 2.2.4	NNPDF30NNLO	
361600	W^+W^-	Powheg+Pythia8	NLO CT10	
361100	$W^+ ightarrow e \nu$	Powheg+Pythia8	CTEQ6L1	
361101	$W^+ ightarrow \mu u$	Powheg+Pythia8	CTEQ6L1	
361102	$W^+ \to \tau \nu$	Powheg+Pythia8	CTEQ6L1	
361103	$W^- \rightarrow e \nu$	Powheg+Pythia8	CTEQ6L1	
361104	$W^- ightarrow \mu u$	Powheg+Pythia8	CTEQ6L1	
361105	$W^- ightarrow au u$	Powheg+Pythia8	CTEQ6L1	
410470	$t\bar{t} \ (\geqslant 1\ell)$	Powheg+Pythia6	A14NNPDF23LO	
410155	tīW	Madgraph+Pythia8	NNPDF23LO	
410218	$t\bar{t}Z(ee)$	Madgraph+Pythia8	NNPDF23LO	
410219	$t\bar{t}Z(\mu\mu)$	Madgraph+Pythia8	NNPDF23LO	
364242	$WWW \rightarrow 3\ell 3\nu$	Sherpa 2.2.2	NNPDF30NNLO	
364243	$WWZ \rightarrow 4\ell 2\nu$	Sherpa 2.2.2	NNPDF30NNLO	
364244	$WWZ \rightarrow 2\ell 4\nu$	Sherpa 2.2.2	NNPDF30NNLO	
364245	$WZZ \rightarrow 5\ell 1\nu$	Sherpa 2.2.2	NNPDF30NNLO	
364246	$WZZ \rightarrow 3\ell 3\nu$	Sherpa 2.2.2	NNPDF30NNLO	
364247	$ZZZ \rightarrow 6\ell 0\nu$	Sherpa 2.2.2	NNPDF30NNLO	
364248	$ZZZ \rightarrow 4\ell 2\nu$	Sherpa 2.2.2	NNPDF30NNLO	
364249	$ZZZ \rightarrow 2\ell 4\nu$	Sherpa 2.2.2	NNPDF30NNLO	

Derivation: DAOD_STDM5

 WZ QCD main background: 2 different generators available and compared for uncertainties

 Z+jets, Zγ, ttbar, WW: All MC backgrounds that include at least one miss-identified lepton are only used to validate data driven method

2. Background and Signal samples

h Signals					
0. Sigi		LO	VBF HVT	1	
	aaHVT	307730	250	307742	
DSID	Mass	313538	275	307743	
307376	250	307731	300	307744	
307377	300	007701	000	001144	
307378	400	313539	325	307745	
302266	500	313540	350	307746	
302267	600				
302268	700	313541	375	307747	
302269	800	307732	400	307748	
302270	900	313542	425		
302271	1000	515542	425		
302272	1100	313543	450		
302273	1200	313544	475		
302274	1300	0.0011			
302275	1400	307733	500		
302276	1500	313545	525		
302277	1600	040540			
302278	1700	313546	550		
302279	1800	307734	600		
302280	1900	307735	700		
202201	2000	307733	700		
302202	2200	307736	800		
302203	2400	307737	900		
302285	2800				
302286	3000	307738	1000		
302287	3500	307739	1100		
302288	4000	307740	1200		
302289	4500	307740	1200		
302290	5000	307741	1300		

	VBF GM
450765	200
450766	250
450767	300
450768	350
450769	400
450770	450
450771	500
502511	225
502512	275
502513	325
502514	375
502515	425
502516	475
502517	525
502518	550
502519	600
502520	700
502521	800
502522	900
502523	1000

NLO

3. Object Reconstruction

- Four lepton categories:
 - Baseline leptons used for 4-lepton veto
 - Loose leptons used for the "fake" background estimation
 - Tighter cuts for the Z, and W leptons
- VBF jets have a tighter selection than baseline analysis jets

Muon object selection			Electro	n object sel	ection							
Selection baseline loose tight(Z) tigh		tight(W)	Selection	baseline	loose	tight(Z)	tight(W)					
$p_{\rm T} > 5 \text{ GeV (15 GeV for CT muons)}$ $p_{\rm T} > 25 \text{ GeV}$ $ \eta < 2.7$ $ 20 \sin \theta < 0.5 \text{ mm}$ cosmic cut (d_0 < 1 mm) $ d_0/\sigma(d_0) < 3^3$ Loose quality (if $p_T > 300 \text{ GeV HighPt quality})$ FCLoose isolation μ -jet overlap removal		$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$p_{\rm T} > 7 \text{ GeV}$ $p_{\rm T} > 25 \text{ GeV}$ $ \eta^{\rm cluster} < 2.47$ Exclude 1.37 < $ \eta^{\rm cluster} < 1.52$ Electron object quality $ z0\sin\theta < 0.5 \text{ mm}$ $ d_0/\sigma(d_0) < 5^4$ LooseLH+BLayer identification					Jet object selection		VPS
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					FCLoose isolation <i>e-µ</i> and <i>e-e</i> overlap removal <i>e-</i> jets overlap removal	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~	~ ~ ~	$p_{\rm T} > 30 \text{ GeV}$ n < 4.5	Vasenne	
Tight quality (if $p_T > 300$ GeV HighPt quality) \checkmark FCTight isolation \checkmark			✓ ✓	MediumLH identification FCTight isolation			1		Pile-up Removal veto b-Tagging		1	
		TightLH identification FCTight isolation					μ -jet overlap removal <i>e</i> -jets overlap removal		1			

a. Inclusive Region Event Selection

Good Run List

data15_13TeV.periodAllYear_DetStatus-v89-pro21-02_Unknown_PHYS_StandardGRL_All_Good_25ns data16_13TeV.periodAllYear_DetStatus-v89-pro21-01_DQDefects-00-02-04_PHYS_StandardGRL_All_Good_25ns data17_13TeV.periodAllYear_DetStatus-v97-pro21-17_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno17e33prim data18_13TeV.periodAllYear_DetStatus-v102-pro22-04_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno17e33prim

Single lepton HLT triggers

5	2015	2016-2018
Single muon	HLT_mu20_iloose_L1MU15 HLT_mu50	HLT_mu26_ivarmedium HLT_mu50
Single electron	HLT_e24_lhmedium_L1EM20VH HLT_e60_lhmedium HLT_e120_lhloose	HLT_e24_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT_e140_lhloose_nod0

WZ inclusive selection

Inclusive event selection				
Event cleaning	Reject LAr, Tile and SCT corrupted events and incomplete events			
Primary vertex	Hard scattering vertex with at least two tracks			
Trigger	Single lepton (electron or muon) trigger			
Jet cleaning	pass DFCommonJetseventCleanLooseBad			
ZZ veto	veto events with additional Baseline leptons			
N leptons	Exactly three leptons passing the "loose-"			
	lepton selection with $p_T > 25$ GeV ($p_T > 27$ GeV for the trigger-matched lepton)			
Z candidate	built from Same-Flavor-Opposite-Sign (SFOS) lepton pair			
	with $M_{\ell\ell}$ closest to Z PDG mass			
W candidate	built from the third lepton and E_T^{miss}			
W, Z selection	Z leptons passing "tight(Z) "lepton selection			
	W leptons passing "tight(W) "lepton selection.			
Mass window	$ M_{\ell\ell} - M_Z < 20 \text{ GeV}$			
Missing Energy	$E_T^{miss}>25~{\rm GeV}$			

High Efficiency 3 leptons in final state,

possibility to use dilepton and MET triggers was studied and no gain was found

Designed to select good W and Z pairs decaying leptonically

 \rightarrow on top of this region the Drell-Yan and VBF signal regions are built

b. Control distributions of selected W[±]Z events in inclusive region

- Validation distributions in the inclusive region
 - Only MC backgrounds used in here and only experimental syst. unc. included

C.

Signal and Control Regions	Baseline WZ selection				
	Event cleaning and primary vertex Single-electron or single-muon trigger Exactly 3 Loose leptons (e or μ) with $p_T > 25$ GeV ($p_T > 27$ GeV for the trigger-matched lepton) ZZ veto: veto events with additional Baseline leptons Z candidate: A Tight Z Same-Flavour-Opposite-Sign lepton pair with $ m_{\ell\ell} - m_Z < 20$ GeV W candidate: Tight W lepton requirements on "non-Z leptons" and $E_m^{miss} > 25$ GeV				
	Selection	Drell-Yan	VBF		
 p_T^{Z / W}: strongly correlated with HVT resonance mass * p_T^Z / M_{WZ} > 0.35 and p_T^W / M_{WZ} 	Signal region	$p_{\rm T}(V)/m(WZ) > 0.35$	At least 2 VBF jets $m_{jj} > 100$ GeV Veto events with <i>b</i> -tagged jets ANN Output > 0.82		
> 0.35 ⇔ Clear separation between signal & SM background	WZ-QCD control region	$p_{\rm T}(W)/m(WZ) \le 0.35$ or $p_{\rm T}(Z)/m(WZ) \le 0.35$ $p_{\rm T}(V)/m(WZ) > 0.1$	At least 2 VBF jets $m_{jj} > 500$ GeV Veto events with b-tagged jets ANN Output < 0.82		
	ZZ control region	Additional <i>Baseline</i> lepton No $E_{\rm T}^{\rm miss}$ requirement	Additional <i>Baseline</i> lepton No $E_{\rm T}^{\rm miss}$ requirement At least 2 <i>VBF jets</i>		

* for heavy resonances produced at rest at s-channel, the $p_T(W, Z) \sim 50\%$ of M_{wz}

c. Signal and Control Regions	Baseline WZ selection				
	Event cleaning and primary vertex				
		Single-electron or single-muc	on trigger		
	Exactly 3 Loose lepton	s (e or μ) with $p_T > 25$ GeV ($p_T > 2$	27 GeV for the trigger-matched lepton)		
	Z	Z veto: veto events with additional	Baseline leptons		
	Z candidate: A Tight W candidate: Ti	Z Same-Flavour-Opposite-Sign lep where the state of the	pton pair with $ m_{\ell\ell} - m_Z < 20 \text{ GeV}$ Z = 25 GeV		
	Selection	Drell-Yan	VBF		
 Enriched in vbf-category events VBF cut-based as cross-check : at least 2 VBS jets 	Signal region	$p_{\rm T}(V)/m(WZ) > 0.35$	At least 2 VBF jets $m_{jj} > 100 \text{ GeV}$ Veto events with b-tagged jets ANN Output > 0.82		
b-jet veto $M_{jj} > 500 \text{ GeV}$ $ \Delta Y jj > 3.5$	WZ-QCD control region	$p_{\rm T}(W)/m(WZ) \le 0.35$ or $p_{\rm T}(Z)/m(WZ) \le 0.35$ $p_{\rm T}(V)/m(WZ) > 0.1$	At least 2 VBF jets $m_{jj} > 500 \text{ GeV}$ Veto events with b-tagged jets ANN Output < 0.82		
	ZZ control region	Additional <i>Baseline</i> lepton No $E_{\rm T}^{\rm miss}$ requirement	Additional <i>Baseline</i> lepton No $E_{\rm T}^{\rm miss}$ requirement At least 2 <i>VBF jets</i>		

c. Signal and Control Regions

	Baseline WZ selection	n
	Event cleaning and primary	vertex
	Single-electron or single-muo	n trigger
Exactly 3 Loose lepton	s (e or μ) with $p_{\rm T} > 25$ GeV ($p_{\rm T} > 2$	7 GeV for the trigger-matched lepton)
Z	Z veto: veto events with additional	Baseline leptons
Z candidate: A Tight W candidate: Ti	Z Same-Flavour-Opposite-Sign lep ght W lepton requirements on "non-	ton pair with $ m_{\ell\ell} - m_Z < 20 \text{ GeV}$ Z leptons" and $E_T^{\text{miss}} > 25 \text{ GeV}$
Selection	Drell-Yan	VBF
Signal region	$p_{\rm T}(V)/m(WZ) > 0.35$	At least 2 VBF jets $m_{jj} > 100$ GeV Veto events with <i>b</i> -tagged jets ANN Output > 0.82
WZ-QCD control region	$p_{\rm T}(W)/m(WZ) \le 0.35$ or $p_{\rm T}(Z)/m(WZ) \le 0.35$ $p_{\rm T}(V)/m(WZ) > 0.1$	At least 2 VBF jets m _{jj} > 500 GeV Veto events with b-tagged jets ANN Output < 0.82
ZZ control region	Additional <i>Baseline</i> lepton No $E_{\rm T}^{\rm miss}$ requirement	Additional <i>Baseline</i> lepton No E_{T}^{miss} requirement At least 2 <i>VBF jets</i>

-> to constrain the main background contributions in SRs using data -> orthogonal to the SRs

5. Signal Optimization a. Drell-Yan selection

- Use the $p_T^{Z/W}/M_{WZ} > 0.35$ as optimized for the 36fb⁻¹ analysis -> to reduce the contribution of not resonant WZ
- Acceptance x Efficiency calculated for the HVT model:
 - <u>Increases steadily</u> as increasing mass at low mass values, but starts to <u>decrease</u> for m > 2 TeV, particularly in the electron channel.
 - Z bosons from the heavy HVT decays are highly boosted \rightarrow 2 lep from the Z boson decays are very close together
 - \circ Limited spatial resolution of the ATLAS calorimeter \rightarrow 2 e cannot be efficiently
 - \circ reconstructed and identified separately \rightarrow loss in efficiency

5. Signal Optimization

b. Artificial Neural Network (ANN) VBF selection

- Training done using simultaneously all the NLO H₅ GM MC signals as "signal" and the SM WZ QCD and EWK events as "background" (same ANN used for HVT VBF)
- Training is performed using events passing a very loose VBF selection:
 - Inclusive region selection
 - Number of jets >=2
 - Dijet invariant mass >100 GeV & b-jet veto
- For training of each mass individually, mass window \sim 40% of input signal mass (~2.5 σ) was used
- Optimal value for the cut on ANN output significance Z :

$$Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$$

Where n: observed events

b : predicted bkg events

 σ : variance $\,$ + Gaussian approximation for syst. Unc.

• After training -> ntuples decorated with the ANN output \rightarrow cut on this output to <u>maximize</u> signal significance

Hyperparameter	Value
Epochs	100
Number of Layers	2
Neurons per layer	45
Learning rate	0.028
Patience	0 (no early stopping)
Dropout	0.2
Momentum	0.7
Folds	4

Table 14: Hyperparameters used for MVA selection of GM signals.

ection:	Variables for ANN training
M _{jj}	Invariant mass of 2 leading pT jets
$\Delta \phi_{jj}$	Difference in ϕ of the leading pT jets
η _w , η _z	Pseudorapidities of the reconstructed gauge bosons
η _{j1}	Leading jet pseudorapidity
$\zeta_{1, lep}$	Event centrality
E_{T}^{miss}	Missing transverse energy
Η _T	Scalar sum of the transverse moments of visible objects (jets & leptons)

5. Signal Optimization b. Artificial Neural Network (ANN) VBF selection

• ANN cut is defined by maximizing the Z for the 200 GeV mass point for GM and

(one ANN training for each mass point : not improving significantly the performance)

ANN output = 0.82

• ANN output applied to both GM and HVT vbf signals

> 85% (70 %) drop in SM background events when comparing to VBF cut-based selection while maximum 30% (50%) signal loss for VBF GM (VBF HVT) signals

6. Background Estimation

From the <u>36fb⁻¹ paper</u>

- Matrix method for **reducible backgrounds** (jets or photons mis-iden. as leptons) -> **Z+jets**, **Z+gamma**, **ttbar**, **Wt & WW**
- Dedicated control regions included in the fit for **irreducible backgrounds** (**WZ and ZZ**) -> to constrain it
- MC estimation for the other backgrounds (ttbarV, VV, VVV)

a. Limit setting strategy & yields

- A binned maximum-likelihood fit using the reconstructed W[±]Z invariant mass spectrum (M_{w7})
- Histogram templates of the signal and backgrounds are fitted using the ResonanceFinder package.
- All the decay channels (electron and muon) are merged together
- *Simultaneous fit* of the signal regions together with their respective WZ and ZZ control regions.

Inputs to the fit

- The W[±]Z invariant mass histograms for signal and backgrounds in the signal region to fit.
- The W[±]Z invariant mass histograms in the W[±]Z and ZZ of the control regions (each SR has their respective W[±]Z CR & the ZZ CR).
- The number of fake-lepton events in each region is obtained with the data-driven method
- The number of events predicted by the simulation in each region for the other backgrounds: ttbar+ V and VVV.

Free parameters

- Normalisation for the W[±]Z QCD and ZZ background (all other backgrounds allowed to vary within its uncertainties)
- Signal normalization
- Decorrelated theory uncertainties between CR and SR

Nuisance parameters

- 1. MC stat. Unc.
- 2. Object & event syst. Unc. + correlations
- 3. PDF, Scale & PS unc.
- 4. Fake uncertainty \rightarrow from the Matrix Method
- 5. ttbar+ V and VVV \rightarrow X-sec theory unc.

Drell-Yan signal region VBF signal region WZ-QCD 1734 ± 77 29 ± 4 WZ-EWK 89 + 1026 + 3 $VVV + t\bar{t}V$ 148 + 27 0.9 ± 0.2 77. 95 ± 5 5 ± 1 Fakes/non-prompt leptons 88 ± 49 0.3 ± 0.8 Total background 2155 ± 71 61 ± 6 Observed 2155 66

Postfit Yields

b. Drell-Yan 95% CL Limits

- Limits improve as expected with increased luminosity
- Currently expected limits are for HVT Model-A : at ~2.4 TeV HVT Model-B : at ~2.5 TeV

- Largest observed excess ~1.1TeV
- local significance 1.2σ

50 Ge¹

ATLAS

Post-fit

VBF SB

vs = 13 TeV, 139 fb⁻¹

4 Data

WZ-QCD

WZ-EWK ZZ

VVV+tīV

Fake/non-prompt Post-fit uncertainty VBF H[±]₅ 375 GeV · 0.5 ----- HVT VBF W' 600 GeV · 4

1000

m(WZ) [GeV]

1200

c. VBF ANN 95% CL Limits

- Limits improve as expected with increased luminosity
- Currently expected limits are for HVT VBF at 340 GeV, 500 GeV & 700 GeV

50 Ge

10

Data/Post-0.8

200

1000

m(WZ) [GeV]

800

500

1500

2000

2500

m(WZ) [GeV]

3000

ATLAS

Post-fit

 $10^3 - \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^3$

WZ-QCD VBF CR

8. Alternative variables

- Sensitive variables that are going to be used in the limits setting procedure => search for new particles in the direction of the extension of the SM
- Clear signal peaks and good discriminating power between different signal models
- Mjj : effective in discriminating between all non-VBS processes and the signal => VBS/VBF topologies : large values for the mJJ

9. Setting limits with m₊^{WZ}

10. Comparison plots for limits with alternative variables (expected)

23

Conclusions

- Search for resonant WZ -> lvll (electron/muons) production in pp collisions by ATLAS at sqrt(s) = 13TeV with an integrated luminosity 139fb-1 => Drell-Yan & VBF processes
- No significant deviation from SM is observed
- Limits are set on the production xsection times branching ratio as a function of resonance mass
- Some alternative variables (mTWZ, mTWZ&mjj, m3lep,Sum3pt) seem to produce stricter limits for specific mass ranges (work in progress)

Backup slides

5. Signal Optimization ANN training variables

Red curve : distribution corresponding to summed mass points in GM signal simulation **Blue curve** : SM WZ background

5. Signal Optimization

Artificial Neural Network (ANN) VBF selection

centrality = min{ [min(η_{l1} , η_{l2} , η_{l3}) - min(η_{i1} , η_{i2})], [max(η_{i1} , η_{i2}) - max(η_{l1} , η_{l2} , η_{l3})] }

- After the training, the ntuples are "decorated" with the ANN output of each event.
- ANN output = 0.82

> 85% drop in SM background events when comparing to VBF cut-based selection while maximum 30% signal loss

Measurement of the smaller pseudorapidity difference between the Most forward jet + lepton, in either hemisphere

5. Signal Optimization Cutbased VBF selection

7. Systematic Uncertainties

- Complete set of objects uncertainties included :
 - Electron systematics (important in qqF)
 - Muon systematics (important in qqF)
 - Missing Et systematics
 - PRW systematics (important in qqF and VBF fits)
 - Jet systematics (using R4_SR_Scenario1_SimpleJER \rightarrow will update to GlobalReduction_SimpleJER)

muon systematics

MUON EFF ISO STAT

MUON_EFF_RECO_STAT

MUON EFF RECO SYS

MUON EFF TTVA STAT

MUON_EFF_TTVA_SYS

MUON_SAGITTA_RESBIAS

MUON SAGITTA RHO

MUON ID

MUON MS

MUON_SCALE

MUON EFF RECO STAT LOWPT

MUON_EFF_RECO_SYS_LOWPT

MUON EFF ISO SYS

- Flavor tagging systematics
- Matrix method systematics
- Shapes are smoothed for the fit

electron systematics

EG_RESOLUTION_ALL	0.01074%
EG_SCALE_AF2	0.00000%
EG_SCALE_ALL	0.17909%
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR	1.03462%
EL_EFF_ISO_TOTAL_1NPCOR_PLUS_UNCOR	0.13293%
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR	0.17624%

missing Et systematics

MET_SoftTrk_ResoPara	0.36243%
MET_SoftTrk_ResoPerp	0.29816%
MET_SoftTrk_ScaleDown	0.36701%

PRW systematics

PRW_DATASF 1.48271%

450	-: Electron ID eπiciency
400	Up variation
350	EL_EFF_ID_TOTAL_1NPCOR_
300	Down variation
250	ATLAS Work in Progress
200	\sqrt{s} = 13 TeV, $\int L dt = 139 \text{ fb}^{-1}$
150	_
100	L
50	
0	llll
1.3	
1.1	
1	
0.9	
0.7	8 10 12 14 16 18 20 22

jet systematics

0.03322%

0.42996%

0.14751%

0.00000%

0.56604%

0.00000%

0.04483%

0.05624%

0.02327%

0.01655%

0.00642%

0.00662%

0.24776%

JET_EtaIntercalibration_NonClosure_highE	0.00001%
JET_EtaIntercalibration_NonClosure_negEta	0.00631%
JET_EtaIntercalibration_NonClosure_posEta	0.00319%
JET_Flavor_Response	0.13921%
JET_GroupedNP_1	0.23703%
JET_GroupedNP_2	0.22260%
JET_GroupedNP_3	0.01573%
JET_JER_EffectiveNP_1	0.00001%
JET_JER_EffectiveNP_2	0.00000%
JET_JER_EffectiveNP_3	0.00001%
JET_JER_EffectiveNP_4	0.00000%
JET_JER_EffectiveNP_5	0.00000%
JET_JER_EffectiveNP_6	0.00000%
JET_JER_EffectiveNP_7restTerm	0.00001%
JET_JvtEfficiency	0.07487%
JET_fJvtEfficiency	0.31240%

(results here are at the level of the WZ inclusive Validation region)

flavor tagging systematics

FT_EFF_Eigen_B_0	0.02674%
FT_EFF_Eigen_B_1	0.00604%
FT_EFF_Eigen_B_2	0.00434%
FT_EFF_Eigen_B_3	0.00158%
FT_EFF_Eigen_B_4	0.00014%
FT_EFF_Eigen_B_5	0.00002%
FT_EFF_Eigen_B_6	0.00002%
FT_EFF_Eigen_B_7	0.00000%
FT_EFF_Eigen_B_8	0.00000%
FT_EFF_Eigen_C_0	0.04878%
FT_EFF_Eigen_C_1	0.00381%
FT_EFF_Eigen_C_2	0.00318%
FT_EFF_Eigen_C_3	0.00048%
FT_EFF_Eigen_Light_0	0.04676%
FT_EFF_Eigen_Light_1	0.00179%
FT_EFF_Eigen_Light_2	0.00492%
FT_EFF_Eigen_Light_3	0.00036%
FT_EFF_extrapolation	0.00336%
FT_EFF_extrapolation_from_charm	0.01013%

8. Theoretical Uncertainties

<u>On Signals</u>

DDE and scale uncertainties calculated for each mass model and signal / control region					mass [GeV]	pdf (%)	scale (%)				
PDF and scale uncertainties calculated for each mass model and signal / control region						250	± 10.39	± 3.96			
 <u>qqF / vbf HVT_pdf envelope</u>: standard deviation of 100 MC replicas of NNPDF 						300	± 10.45	± 3.17			
(nominal))and comparison with CT14 and MMHT						400	± 10.18	± 1.50			
		, c I,							500	± 9.94	± 0.99
• <u>GM pdf envelope</u> :	standard deviation of 100 M	C repli	cas			mass [GeV]	pdf (%)	scale (%)	600	± 9.75	± 1.63
 Renormalization 8 	factorization Uncertaintie	es * : 1	using 7 n	oint va	ariations a	250	± 13.35	± 7.31	800	± 9.70 ± 0.08	± 2.55 ± 2.05
		<u>.</u>				300	± 13.41	± 7.72	900	± 9.96 + 10.56	± 2.93 + 3.53
combining them usi	ng PING recommendations					350	± 13.51	± 8.02	1000	± 10.50 ± 11.09	+4.06
						400	± 13.68	± 8.44	1100	± 11.03 ± 11.73	+4.57
<u>W[±]Z QCD</u>						450	± 13.78	± 8.72	1200	± 12.36	± 5.03
						500	± 13.75	± 9.11	1300	± 13.06	± 5.45
						600	± 13.82	± 9.8	1400	± 13.76	± 5.84
		DSID	mass [GeV]	pdf (%)	scale (%)	700	± 13.83	± 10.58	1500	± 14.45	± 6.22
Pdf unc. Drell-Yan/ VBF SR : ~5 %		502511	225	± 24.30	± 12.99	800	± 13.89	± 11.23	1600	± 15.12	± 6.57
		502512	275	± 24.24	± 13.15	900	± 13.98	± 11.81	1700	± 15.72	± 6.90
Scale unc. In Drell-Yan (VBE) SR · ~ 15 % (~20 %)	502513	325	± 24.66	± 13.72	1000	± 13.86	± 12.44	1800	± 16.33	± 7.20
	20 /0)	502514	375	± 26.75	± 13.46	1100	± 13.95	± 13.1	1900	± 16.90	± 7.51
		502515	425	± 25.74	± 13.83	1200	± 14.07	± 13.72	2000	± 17.39	± 7.79
PS +Mod. Unc. in Drell-Yan/VBF SR : up to	5 %	502516	475	± 24.99	± 14.17	1300	± 14.06	± 14.24	2200	± 18.29	± 8.32
		502517	525	± 25.94	± 13.63	1400	± 14.06	± 14.76	2400	± 19.03	± 8.85
		502518	550	± 26.27	± 13.63	1500	± 14.01	± 15.37	2600	± 19.63	± 9.34
	Other SM blog	502519	600	± 25.85	± 13.80	1600	± 14.12	± 15.87	2800	± 20.22	± 9.82
<u>VV-Z EVVK</u>	Other Sivi DKg	502520	700	± 26.59	± 14.04	1700	± 14.08	± 16.36	3000	± 20.50	± 10.28
		502521	800	± 26.60	± 14.58	1800	± 14.24	± 16.91	4000	± 21.21 ± 21.65	± 11.40 ± 12.41
Pdf unc_Drell-Yan/ VBE SR · ~10 %	20 % for VVV 13% for ttV	502522	900	± 27.21	± 14.66	1900	± 14.13	± 17.39	4500	± 21.03 ± 23.60	± 12.41 + 13.45
		502523	1000	± 27.75	± 15.20	2000	± 14.31	± 17.84	5000	± 25.00 ± 25.03	± 13.94
Scale unc. In Drell-Yan / VBF SR : ~ 5%	ZZ : pdf ~ 10 %	10	v	BF GM			VBF hv	rt		qq hvt	
PS Unc. in Drell-Yan/VBF SR : up to 5 %	scale ~ 15/25 %									-	

8. Theoretical Uncertainties

b. On SM WZ background (i) Cut-Based

W[±]Z QCD theory Uncertainties

Nominal: Sherpa 2.2.2 used as nominal generator (364253) 0,1j@NLO, 2,3j@LO + PS
 Alternative: Madgraph+Pythia8 (361293) 0,1j@NLO, FxFx

<u>Sherpa QCD pdf envelope</u>: standard deviation of NNPDF100 MC replicas, and comparison

of NNPDF30nloas0118 (nominal) with CT14nnlo and MMHT2014nlo68cl sets **Madgraph OCD pdf envelope**: standard deviation of NNPDF100 MC replicas

<u>**OCD Scale Uncertainties :**</u> using 7 point variations Compare different variations with nominal $\mu_R = \mu_F = 1$ and creating the envelope with maximum downwards & upwards deviations

Pdf unc. in qqF/	VBF SR : ~5 %
------------------	---------------

Scale unc. in qqF SR : ~ 15 % Scale unc. VBF SR ~20 % Calculated at reco level for both qqF/ VBF SRs and CRs

W[±]Z EWK theory Uncertainties > Nominal: Madgraph+Pythia8 (364739-364742) LO > Alternative: none Madgraph EWK pdf envelope: standard deviation of NNPDF100 MC replicas & Asymmetric Hessian Errors from the 56 eigenvectors of CT14nnlo set EWK Scale Uncertainties: using 8 point variations and combining them using PMG recom. Compare different variations with nominal μ_R = μ_F =1 and creating the envelope by getting maximum downwards & upwards deviations

> Pdf unc. in qqF/ VBF SR : ~10 % Scale unc. in qqF/ VBF SR : ~ 5%

Parton Shower Unc.

Rel. uncertainty -> difference between the mass distributions of Madgraph+Py8 and Sherpa for QCD (Madgraph+Py8/ Madgraph+Herwig for EWK) and dividing by a factor of 2

PS +Mod. Unc. in qqF SR : up to 5 % PS +Mod. Unc. in VBF SR : up to 5 %

PS Unc. in qqF SR : up to 5 % PS Unc. in VBF SR : up to 4 %

8. Theoretical Uncertainties b. On SM WZ background (ii) ANN

- Calculated at reco level for both VBF SRs and CRs
 - c. On other SM backgrounds
 - 20 % for VVV, 13% for ttV
 - For ZZ : pdf and scale unc. envelopes

vbf SR

b. Binning Optimization

- 1. Defined a simple algorithm to define which binning configurations to test:
 - a. Minimum total background per bin (default = 10, 5 for high mass region): For the asymptotic approximation to work
 - b. Maximum relative bkg MC uncertainty (default = 0.3): To avoid bins with large MC uncertainties
- 2. Compare the limits extracted using stat only fit. Two possibilities tried:
 - a. Published binning, almost the same as the 36fb⁻¹
 - b. Optimal binning, from the algorithm described previously

GM VBF ANN signal region (9 bins): [150,200,230,270,300,340,390,480,660,5000] HVT VBF ANN signal region (9 bins): [150,200,250,300,350,400,450,520,650,5000] mH5 [GeV] HVT qqF signal region (22bins):[150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,1010,1080,1160,1280,1480,5000]

Limits for mwz VBF cutbased

Table 4: Dominant relative uncertainties in the best-fit signal-strength parameter (μ) for a hypothetical HVT signal of mass $m(W') = 1\,100$ GeV in the Drell-Yan signal region and a GM signal of mass $m(H_5^{\pm}) = 375$ GeV in the VBF signal region. For this study, the production cross-section of the signals is set to the expected median upper limits at these two mass values. Uncertainties with smaller contributions are not included.

Source of uncertainty	$\Delta \mu / \mu$ [%]		
	Drell-Yan signal region	VBF signal region	
	m(W') = 1100 GeV	$m(H_5^{\pm}) = 375 \text{ GeV}$	
WZ-QCD+ZZ normalization	2	11	
WZ background: parton shower	6	1	
WZ background: scale, PDF	5	8	
Fake/non-prompt background	3	1	
ZZ background: scale, PDF	0.2	< 0.1	
$VVV + t\bar{t}V$ modelling	3	1	
Electron identification	6	3	
Muon identification	1	4	
Jet uncertainty	0.8	16	
Flavour tagging	0	1	
Missing transverse energy	0.2	0.5	
MC statistical uncertainty	10	5	
Luminosity	2	8	
Pileup	0.1	8	
Total systematic uncertainty	16	22	
Data statistical uncertainty	54	55	
Total	56	59	

10. Alternative variables correlation plots

Binning for alternative variables

Variable	Binning
m_{WZ}	vbfHVT=[0,150,200,250,300,350,400,460,520,650,5000]
	vbfGM=[0,150,200,230,270,310,350,390,480,660,5000]
	Drell-Yan=[0,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,
	1010,1080,1160,1280,1480,5000]
m_T^{WZ}	vbf=[0, 120, 150, 170, 190, 210, 230, 250, 270, 290, 320, 350, 390, 440, 510, 640, 3000]
1	Drell-Yan=[0, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380,
	420, 440, 460, 480, 510, 540, 570, 610, 660, 720, 810, 1010, 3000]
$m_{jj} \& m_T^{WZ}$	$ \begin{bmatrix} 500, 1500 \end{bmatrix}, \text{medium} \ m_T^{WZ} \texttt{=} \begin{bmatrix} 0, 130, 150, 170, 190, 210, 230, 250, 270, 300, 330, 370, 420, \\ & 490, 640, 3000 \end{bmatrix} $
	$[1500,\infty]$, high $m_T^{WZ}{=}[0,160,200,240,300,400,3000]$
malen	vbf=[0, 110, 130, 150, 170, 190, 210, 230, 250, 270, 300, 330, 370, 410, 470, 560, 790, 3000]
acp.	Drell-Yan=[0, 110, 130, 150, 170, 190, 210, 230, 250, 270, 290, 310, 330, 350, 370, 390, 420, 450
	490, 540, 610, 730, 3000]
nT_{2}	vbf=[0 20 40 60 80 100 120 140 160 180 200 230 260 300 360 480 3000]
P≠ siep	Drell-Yan=[0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 330, 360, 400.
	450, 530, 740, 3000]
Sum 3Pt	vbf=[0, 120, 140, 160, 180, 200, 220, 240, 260, 280, 310, 340, 380, 430, 500, 660, 3000]
	Drell-Yan=[0, 130, 150, 170, 190, 210, 230, 250, 270, 290, 310, 330, 350, 370, 390, 410, 440,
	500, 540, 590, 660, 800, 30001

36 fb-1 Results

 $m(H_5^{\pm})$ [GeV]