

Search for A \rightarrow ZH \rightarrow vvbb/lltt at \sqrt{s} =13TeV with the ATLAS detector

Ilia Kalaitzidou Dr. Spyros Argyropoulos Dr. Tetiana Moskalets Roman Küsters

Albert-Ludwigs-Universität Freiburg

16 June 2022

HEP2022 - 39th Conference on Recent Developments in High Energy Physics and Cosmology, Thessaloniki, Greece

Motivation

- Generation of cosmic matter-antimatter asymmetry → One of the biggest open questions in particle physics and cosmology
- Sakharov conditions: i) Baryon number violation ii) C and CP violation iii) Departure from thermal equilibrium

• SM unable to generate baryon asymmetry of sufficient size

Extend scalar sector → Two-Higgs-doublet models (**2HDMs**)

2HDMs

• Scalar potential

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right]$$

• Two complex SU(2) doublets $\Phi_1, \Phi_2 \rightarrow 8$ fields

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ (v_a + \rho_a + i\eta_a) / \sqrt{2} \end{pmatrix}, \quad a = 1, 2$$

• After EWSB three get "eaten" to give mass to W±, Z^o gauge bosons → five physical scalar fields

4

2HDMs and the Electroweak Phase Transition

The $A \rightarrow ZH$ decay

 $A \rightarrow ZH$ "smoking gun" signature of 2HDMs with strong EWPT!

• EWPT in 2HDMs strongly favours a heavy CP-odd state A with a mass splitting $m_A - m_H \ge v$ (necessary condition for baryogenesis)

The decay $A \rightarrow ZH$ strongly favoured:

- large amount of phase space available
- coupling g_{AZH} ~ sin(β-α) unsuppressed in the alignment limit Vs coupling g_{AZh} ~ cos(β-α) vanishes

BURG

N N N

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

Previous A → **ZH** analyses

• ATLAS: AZH→I+I-bb/I+I-W+W-EPJC 81 (2021) 396

Signal signature IItt

Signal signature

➢ 3 leptons (at least one OSSF)

➢ 2 b-jets

➤ At least 4 jets

Object reconstruction

> Z boson → 2 OSSF leptons (e+e-/µ+µ-), if more than one pairs (eee/µµµ) consider pair with mass closer to m_z

 \succ One leptonic top decay \rightarrow Lepton not from Z and b-jet with min ΔR to this lepton

 \succ One hadronic top decay \rightarrow 2 light jets with mass closest to m_w and b-jet not from leptonic top

Dominant backgrounds Iltt

Signal signature vvbb

Signal signature

- Zero-lepton channel
- \triangleright Missing transverse momentum (E_T^{miss}>150GeV)
- At least 2 b-jets
 - Object reconstruction
- ightarrow H candidate \rightarrow Two leading b-jets
- ightarrow VH (A) candidate (transverse mass) \rightarrow H+E_T^{miss}

Dominant backgrounds vvbb

HREIBURG

Event Selection

Assess improvement after each cut

- Calculate significance before and after the cut
- > Asymptotic log-likelihood ratio formula

 $\mathcal{S} = \sqrt{2[(s_i + b_i)ln(1 + \frac{s_i}{b_i}) - s_i]}$

where \boldsymbol{s}_i the signal and \boldsymbol{b}_i the background

The significance is computed for each bin i and then added in quadrature using the $m_T(VH)$ variable

Significance Improvement

Suppress multijet background $\Rightarrow \min \Delta \varphi(E_T^{miss}, jets) > \pi/10$ $\Rightarrow E_T^{miss} sig > 10$

$$S = \frac{E_{\rm T}^{\rm miss}}{\sqrt{H_{\rm T}}}$$
 or $S = \frac{E_{\rm T}^{\rm miss}}{\sqrt{\sum E_{\rm T}}}$

- Suppress events with fake E_T^{miss}
- Apply cut on the minimum value sufficient to cut the multijet background

Suppress tī bkg $> m_{top}^{b,near} > 180 GeV \& m_{top}^{b,far} > 200 GeV$

$$m_{top}^{b,near/far} = \sqrt{2p_T^{b,near/far} E_T^{miss} (1 - \cos[\Delta\varphi(p_T^{b,near/far}, E_T^{miss}))]}$$

mass of the farthest and nearest jet (from the two leading b-jets) from the $\ensuremath{\,E_T^{miss}}\xspace$ vector

Significance improvement

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

Significance improvement

Significance improvement after the cut optimisation

m_{bb} binning

bb system four-vector is scaled so that it reproduces the mass of the H boson

- Test different m_H hypotheses m_H^{hypo}
- > The m_H resolution is approximately m_H^{hypo}/10
- > Define m_H window as $m_H^{hypo} \pm 2res$ (Signal Region)
- ► Events in SR \rightarrow Rescale p(b_{1,2}) \rightarrow p(b_{1,2})·m_H^{hypo}/m_H

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

BURG

m_{bb} binning

Fit the reconstructed $m_T(VH)$ mass for each signal hypothesis (m_A, m_H) with the Bukin function

~11 % average resolution improvement

Great significance improvement with the mH window definition and rescaling

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

UNI FREIBURG

Preliminary results

Hybrid fit

Background only fit to:

- Asimov data in SR
- Data in CRs
- \blacktriangleright Single bin for the fit variable in CRs
- Asimov data in SR reproduce the sum of the backgrounds
- ➢ Scaled backgrounds using the normalisation factors from the fit to data in the CRs SFs: 0.89 for ttbar (from eµ) and 1.16 for Zhf (from 2L)

Search for A \rightarrow ZH \rightarrow vybb at \sqrt{s} =13TeV with the ATLAS detector

Ge/

щ

Preliminary results

> Validate the impact of the shape uncertainties from fit discriminant distributions in VRs (1L and Hlo200)

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

Summary and future work

Significance improvement after the cuts

 \succ Exclusion of high $m_{\rm A}$ with large mass splitting

Preliminary fit results in good agreement

Upcoming steps

Unblinding and extraction of upper limits for signal cross-section

Thank you for your time!

Back-up slides

Why first-order PT

• Universe cools to below $T_c(PT) \rightarrow$ bubbles of the true vacuum (broken phase) start forming within the sea of the false vacuum (unbroken phase)

False vacuum continues to exist below T_c as the transition is first order

- As the temperature falls, the bubbles start growing → bubbles of the true vacuum nucleate and fill up the entire universe
- Different regions of the universe pass through the phase boundary between the broken and the unbroken phase
- The transition being discontinuous, the order parameter jumps rapidly across these boundaries → The system
 is driven away from equilibrium, as the baryon number violating processes are not fast enough to keep pace
 with this rapid change

Objects

- Leptons: $p_T > 7 \text{GeV}$ and $|\eta| < 2.5$
- Jets: p_T >25GeV and $|\eta|$ <2.5
- **E**_T**miss** built from non-interacting particles
- **b-tagging** performed using b-hadrons with p₁>5GeV (70% b-jet efficiency)

Background composition in CRs vvbb

June 16, 2022

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

Cuts

> Tau veto \rightarrow Reduce $t\bar{t}$ bkg with $t\rightarrow Wb\rightarrow \tau v_{\tau}b$

Significance Improvement

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

Cuts

Tau veto

 $\geq 2 \le N_{jets} \le 6$

 $\gg \min \Delta \varphi(E_T^{miss}, jets) > 0.319$

 $> E_T^{miss} sig > 10$

 $\label{eq:mtopb} > m_{top}^{b,near} > 180 GeV \& m_{top}^{b,far} > 200 GeV \rightarrow \\ Suppress \ t\bar{t} \ bkg$

 $m_{top}^{b,near/far} = \sqrt{2p_T^{b,near/far} E_T^{miss} (1 - \cos[\Delta\varphi(p_T^{b,near/far}, E_T^{miss}))]}$

mass of the farthest and nearest jet (from the two leading b-jets) from the $\,E_{T}^{miss}\,vector$

Cuts

Tau veto

 $\geq 2 \le N_{jets} \le 6$

- $\rightarrow min\Delta \phi(E_T^{miss}, jets) > 0.319$
- $> E_T^{miss} sig > 10$
- ightarrow m_{top}^{near} > 180GeV & m_{top}^{far} > 200GeV
- > $\Delta R(b_1,b_2) < 3.3$, for 2tag region $\Delta R(b_1,b_2) < 3.5$, for 3+tag region

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

Muon-in-jet correction

Correct the jet if a muon is found within the jet cone → Targets semi-leptonic decays of B hadrons

- $\geq p_{\tau}(\mu) > 5 \text{GeV} \text{ and } \Delta R < 0.4$

 \succ If multiple muons are matched \rightarrow the nearest muon to the jet axis is used

 $\Delta R < 0$

Fit m_µ and m_A with the Bukin function, with and without the muon-in-jet correction

H mass distribution

Average resolution improvement after the correction

$$> m_{\rm H} \sim 11\%$$

$$> m_{\rm A} \sim 4\%$$

BURG

Cut	Regions						
Cui	2L	eμ	1L	Hlo/Hhi	Hin		
N jets	2-5						
N <i>b</i> -jets	≥ 2						
m_{H}^{cand}			≥	50 GeV			
N τ -leptons				0			
$p_T(V)$	$\geq 150 \text{ GeV}$						
$\min_i \Delta \phi(E_{\rm T}^{\rm miss}, \vec{p}_i^{\rm jet})$	$> \pi/10$						
$A P(h, h_{r})$	< 3.3 (2 <i>b</i> -jets)						
$\Delta \mathbf{K}(b_1, b_2)$	$< 3.5 (\ge 3 b$ -jets)						
N leptons	2 1			0			
Lepton flavour	ее/µµ еµ		e/µ	-			
$p_{\mathrm{T}}(\ell_1)$	> 27	GeV		-			
$ m_Z^{\text{cand}} - m_Z $	< 10 GeV	-					
$\mathcal{S}_{\mathrm{MET}}$	< 5	-	> 3	> 10			
$m_{\rm top}^{\rm near}$	-	•		> 180 GeV			
$m_{ m top}^{ m far}$	-			> 200 GeV			
$ m_H^{\text{cand}} - m_H^{\text{hypo}} $	-			$> 0.2 \cdot m_H^{\text{hypo}}$	$< 0.2 \cdot m_H^{\text{hypo}}$		

Search for A $\rightarrow\,$ ZH $\rightarrow\,$ vvbb at $\sqrt{s}{=}13 TeV$ with the ATLAS detector

Event Selection Iltt

Cut	Regions							
Cut	ss _Zin	ss _Zout	L3hi _Zout	Hlo/Hhi	Hin	L3lo_Zin	L3lo _Zout	
N leptons	3							
$p_{\mathrm{T}}\left(\ell_{1} ight)$	$\geq 27 \text{ GeV}$							
N jets	≥ 4							
N <i>b</i> -jets	2							
$\left \eta_{H-\mathrm{cand}}^{\mathrm{ZH-r.fr.}} ight $	$< 2.2 + 0.0004 \cdot m_{H}^{ m cand} - 0.0011 \cdot m_{A}^{ m cand}$							
$p_{\mathrm{T}}\left(\ell_{3} ight)$	\geq 13 GeV \geq 7 & \leq 13 GeV					& ≤ 13 GeV		
Lepton flavour	ееµ/µµе			$eee/ee\mu/\mu\mu e/\mu\mu\mu$				
OSSF lepton pairs	0			≥ 1				
$ m_Z^{\text{cand}} - m_Z $	$\leq 10 \text{ GeV}$	≥ 10 &	$\leq 20 \text{ GeV}$		$\leq 10 \text{ GeV}$		$\geq 10 \& \leq 20 \text{ GeV}$	
$ m_{H}^{\text{cand}} - m_{H}^{\text{hypo}} \begin{array}{c} m_{H}^{\text{hypo}} < 500 \text{ GeV} \\ m_{H}^{\text{hypo}} > 500 \text{ GeV} \end{array}$	-			$> 0.32 \cdot m_H^{ ext{hypo}}$ $> 0.24 \cdot m_H^{ ext{hypo}}$	$< 0.32 \cdot m_H^{\text{hypo}} \\ < 0.24 \cdot m_H^{\text{hypo}}$		-	

E_T^{miss} significance

- The reconstructed E_{τ}^{miss} in ATLAS is characterised by two main contributions:
 - i. Hard objects (fully reconstructed and calibrated objects: muons, electrons, photons, τ-leptons, and jets)
 - ii. Soft term (additional signals which are not associated with any of the reconstructed hard objects)

$$\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}} = -\left(\sum_{i \in \mathrm{muons}} \boldsymbol{p}_{\mathrm{T}}^{i} + \sum_{i \in \mathrm{electrons}} \boldsymbol{p}_{\mathrm{T}}^{i} + \sum_{i \in \mathrm{photons}} \boldsymbol{p}_{\mathrm{T}}^{i} + \sum_{i \in \mathrm{hadronic}} \boldsymbol{p}_{\mathrm{T}}^{i} + \sum_{i \in \mathrm{jets}} \boldsymbol{p}_{\mathrm{T}}^{i} + \sum_{i \in \mathrm{Soft Term}} \boldsymbol{p}_{\mathrm{T}}^{i}\right)$$

• The E_{τ}^{miss} significance S helps to separate events in which the reconstructed E_{τ}^{miss} originates from weakly interacting particles, from those in which E_{τ}^{miss} is consistent with contributions coming from particle measurement, resolutions and inefficiencies

$$S = \frac{E_{\rm T}^{\rm miss}}{\sqrt{H_{\rm T}}}$$
 or $S = \frac{E_{\rm T}^{\rm miss}}{\sqrt{\sum E_{\rm T}}}$ event-based approximations to the total $E_{\rm T}^{\rm miss}$ resolution

Object-based missing transverse momentum significance in the ATLAS detector

June 16, 2022

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

Bukin Fit

• Fitting function for asymmetric peaks

Fit parameters

- Xp: peak position
- Sigma: gaussian width
- Xi: asymmetry parameter
- Rho1: parameter of the left tail
- Rho2: parameter of the right tail

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

BURG

INN

Theory systematic uncertainties

Systematic uncertainties arise from the MC modelling of the background and signal processes

Sources:

- Missing higher orders in the calculation of the inclusive matrix elements
- Uncertainties from the choice of PDFs
- Merging-scale uncertainties
- Resummation scale uncertainties
- Matching uncertainties
- Parton shower/hadronisation uncertainties

Background	Systematic				
	Scales, PDF				
tthar (dominant)	ISR/FSR				
libar (uominani)	ME/Matching				
	PS/Hadronisation				
Z+heavy flavour jets	Scales, PDF				
(dominant)	CKKW/QSF				
W+heavy flavour jets	ME/PS				
	Scales, PDF				
	ISR/FSR				
Wt	ME/Matching				
	PS/Hadronisation				
	ttbar-Wt Interference				
	Scales, PDF				
Single top	ISR/FSR				
	PS/Hadronisation				
107	Scales, PDF				
V V	NLO merging				
	Scales, PDF				
JIVI MIYYS	PS/Hadronisation				

Normalisation Uncertainty Sample Systematic Scales +10.5/-11.2PDF 1.5 ISR -0.8/+10.7FSR +3.1/-19.4ttbar ME (matching) 7.4 8.2 PS Total 23.5

Theory systematic uncertainties

Inclusive Normalisation Uncertainty

$$\sigma_{\rm norm} = \sqrt{\sum_{i} \left(1 - \frac{N^{\rm alt,i}}{N^{\rm nom}}\right)^2}$$

where i runs over all alternative MC generators considered for a given process and N corresponds to the total expected background yield in all regions

Shape Uncertainty

shape uncertainity = $\frac{var - nom}{nom}$

June 16, 2022

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector

Theory systematic uncertainties

Acceptance Uncertainty

$$\sigma_{\text{accept}} = \sqrt{\sum_{i} \left(1 - \frac{N_{\text{SR}}^{\text{alt},i}}{N_{\text{CR}}^{\text{alt},i}} \middle| \frac{N_{\text{SR}}^{\text{nom}}}{N_{\text{CR}}^{\text{nom}}} \right)^2}$$

where i runs over all alternative MC generators considered

Normalisation/Acceptance differences between the various analysis regions

Sampla	Systematic	Regions					
Sample	Systematic	1L/SR	$e\mu/\mathrm{SR}$	2L/SR	2-tag/3p-tag		
	Scales	-	+5.0/-3.1	+6.2/-3.7	-		
	PDF	-	-	-	-		
$t\bar{t}$ ME	ISR	-0.6/+2.6	-0.5/+9.0	-0.9/+12.1	-0.07/-1.2		
	\mathbf{FSR}	+1.4/-1.9	+1.3/-0.4	-	+2.8/-2.6		
	ME (matching)	2.6	-4.3	-9.2	-		
	\mathbf{PS}	6.6	7.6	8.0	10.5		
	Total	10.2	12.5	16.8	11.3		

		Regions						
Sample	Systematic	$m_H^{hypo} = 200 GeV$		$m_H^{hypo} = 300 GeV$		$m_H^{hypo} = 400 GeV$		
		mHlo/SR	mHhi/SR	mHlo/SR	mHhi/SR	mHlo/SR	mHhi/SR	
	Scales	+0.7/-1.4	+1.5/-1.4	+1.6/-2.0	+1.4/-1.0	+1.5/-1.9	+3.1/-2.4	
$t\bar{t}$	PDF	-	-	-	-	-	1.0	
	ISR	-0.7/-1.4	+0.2/+3.7	-0.9/-5.0	-0.3/-1.3	-	-1.0/+11.8	
	FSR	-1.9/+3.9	-2.2/+1.0	+0.2/+2.5	-1.9/+1.6	+1.6/+1.4	-0.2/-1.4	
	ME (matching)	4.4	5.1	-	6.1	-4.9	-	
	PS	-	-	-	-3.2	2.8	-1.9	
	Total	5.4	5.8	3.1	7.3	6.0	7.3	

Initial validation

- > Expected exclusion obtained from a stat-only fit to Asimov data (filled area) and from the LLR (line)
- Good agreement between stat-only fit and LLR

Search for A \rightarrow ZH \rightarrow vvbb at \sqrt{s} =13TeV with the ATLAS detector