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Intro to HL-LHC Challenges

e Peak luminosity =—Integrated luminosity

* High Luminosity LHC (HL-LHC): -
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https://lhc-commissioning.web.cern.ch/schedule/images/LHC-ultimate-lumi-projection.png

Heterogeneous Computing

e Run 2 computational resources dominated by CPU =

Exploit alternative processing units: FPGA, GPU, etc.

e Application of GPU computing in CMS: Expected to be
, _ large fraction of
- Pixel track & vertex reconstruction (patatrack). High Performance

- Outer tracker strip local reconstruction. Computing

- Electromagnetic calorimeter (ECAL) reconstruction.
- Hadronic calorimeter (HCAL) reconstruction.

e Significant reductions in timing (~25%)
for Run 3 CMS High Level Trigger (HLT)!.

e Alternative processing units: Cheaper per nominal compute operation =

Significant cost reduction (~35-75%)
projected for HL-LHC computational resources!’.

["]: CMS-TDR-022



https://doi.org/10.3389/fdata.2020.601728
https://cds.cern.ch/record/2759072

Segment Linking Overview

* Leverage GPU performance in track reconstruction —
Algorithm architecture suitable for parallelization.

e Segment Linking:
A highly parallelizable track reconstruction algorithm

- Moves away from sequential Kalman filter based algorithms —
mkFit project tries to make the most out of that.

- Relies on In the tracker to build short tracks.
- Short tracks linked to form progressively longer tracks.

- Selects objects from intermediate collections to create a Track Candidate
collection with high efficiency and low fake rate.

* Inspired by XFT algorithm in the CDF at the Tevatron.

* Prototype presented in ICHEP 2016.



https://arxiv.org/abs/1906.11744
https://www.researchgate.net/publication/3136570_Online_Track_Processor_for_the_CDF_Upgrade
https://indico.cern.ch/event/432527/contributions/2264243/

CMS Outer Tracker @ HL-LHC
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Linking Stubs

Consider helices with
- + charge
* pr=0.8GeV =
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Linking Segments
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Linking Pixel Segments
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Combine outer tracker with inner tracker objects = Cleaner tracks
Pixel Segment + Quintuplet =

Pixel Segment + Triplet =
Pixel Triplet
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Track Candidate Collectlon

Outer tracker

Inner tracker

* Final Track Candidate (TC) collection includes:

- Pixel Quintuplets (pT5) —
— Performance driver.

__.'
- Unlinked Pixel Segments (pLS)
— Important at low pt and high N
- Pixel triplets (pT3)
— Regain low pr efficiency:.
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Inner tracker

- Quintuplets (T5) .
— Important for displaced tracks. Outer tracker
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Physics Performance: Efficiency

e Efficiency vs. pr & n checked in ¢f sample in PU200.

 Denominator: All simulated tracks passing:
- |dz] <30 cm
- ‘dxyl <2.5cm

e Numerator: Simulated tracks matched to TC track (>75% hits).
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Physics Performance: Efficiency

e Efficiency vs. dxy checked in muon gun sample with displaced vertex
uniformly distributed in a (5 cm)3 cube around the interaction point.

 Denominator: All simulated tracks passing:
- |dzl < 30 cm

e Numerator: Simulated tracks matched to TC track (>75% hits).
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Physics Performance: Fake Rate

e Fake rate vs. pt & n checked in #f sample in PU200.

e Denominator: All TC tracks.

e Numerator: TC tracks NOT matched to simulated track (>75% hits).
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GPU Architecture

0O (64) cores O (100)— 6(1000) cores
~2 Flops (Intel Xeon) 15 Flops (NVIDIA Tesla V100)
Low latency High latency (device-host memory transfers)
Good for serial processing Good for parallel processing

= GPU programming requires: \
- Suitable algorithm o
(=parallelizable). memory
- Programming tricks

(=clever memory usage). 5

e Efficiently take advantage of:

- Multitude of computing units.

- Different memory levels
(size vs. speed trade-off).



https://www.khronos.org/assets/uploads/developers/presentations/CppCon-Efficient-GPU-Programming_Sep19.pdf

GPU Implementation

e Data stored in Structure of Arrays (SoA) format =

Appropriate for parallelized access.
e Custom cache allocation for optimized memory assignment.

* Truncate number of objects based on final occupancy =

Minimize memory footprint.

 Full implementation on NVIDIA Tesla V100:
https://github.com/SegmentLinking/TracklLooper



https://github.com/SegmentLinking/TrackLooper

GPU Implementation

o Kernels: Independent set operations on separate processing element.

Qumtuplets

Pixel Segments -——-> Pixel Quintuplets |—»| Pixel Trlplets
e Each kernel = Single Instruction, Multiple Data (SIMD) — Track Candidates

Same steps applied to different objects —
Local nature of Segment Linking.

e Speed up by multi-streaming: Run parts of kernels in different streams.
- Memory transfers also “hidden” by concurrent computations.
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Timing

e Timing measurements in ¢f sample in PU200.

- Only algorithm execution —
Final device to host memory transfer excluded.

e 1-stream:t =32 ms
e 8-stream:t =26 ms
- ~20% timing improvement by exploiting multi-streaming.

e Comparable with latest CMS tracking (~40 ms) on CPU.

e Comparable also price-wise —
2x 32-core Skylake Gold Xeon processors =~ NVIDIA Tesla V100.


https://cds.cern.ch/record/2792313

Future Updates

* Physics-wise:

e Stretch performance to its limits —
Further selection optimization for better efficiency and lower fake rate.

* Improved displaced tracks reconstruction.
* Incorporate latest developments (e.g. patatrack pixel tracks)
e Computing-wise:
* Optimize algorithms for complex physics parameter calculations.
* Extend usage of alternate data types — Half precision.

* Improve memory coalescence = Timing reduction.

* The Great Design:
CMS software integration for HLT and offline usage.



Summary

e Segment Linking:
- A highly parallelizable track reconstruction algorithm.
- Aimed at facing HL-LHC challenges.
- Successfully implemented on GPU.
- Competitive physics performance (efficiency and fake rate).
- Timing comparable with current CMS HLT tracking algorithms.

- More improvements and CMS integration planned for the future.



