Segment Linking: A Highly Parallelizable Track Reconstruction Algorithm for HL-LHC

HEP 2022

Philip Chang, Peter Elmer, Yanxi Gu, Slava Krutelyov, Balaji Venkat Sathia Narayanan, Gavin Niendorf, Tres Reid, Matevž Tadel, <u>Manos Vourliotis</u>, Bei Wang, Peter Wittich, Avi Yagil

Intro to HL-LHC Challenges

- High Luminosity LHC (HL-LHC): Planned LHC upgrade with up to ×8 current luminosity.
- Higher luminosity \Rightarrow

More simultaneous interactions (PU): $\langle PU \rangle_{LHC} \leq 70 \rightarrow \langle PU \rangle_{HL-LHC} \approx 200$

More PU ⇒

Increased computational complexity \Rightarrow

- Increased timing.
- Increased cost.

Heterogeneous Computing

- Run 2 computational resources dominated by CPU ⇒
 Exploit alternative processing units: FPGA, GPU, etc.
- Application of GPU computing in CMS:
 - Pixel track & vertex reconstruction (patatrack).
 - Outer tracker strip local reconstruction.
 - Electromagnetic calorimeter (ECAL) reconstruction.
 - Hadronic calorimeter (HCAL) reconstruction.
- Significant reductions in timing (~25%) for Run 3 CMS High Level Trigger (HLT)^[*].

[*]: <u>CMS-TDR-022</u>

anl

 e_{0}

Alternative processing units: Cheaper per nominal compute operation ⇒
 Significant cost reduction (~35–75%)

projected for HL-LHC computational resources[*].

Segment Linking Overview

- Leverage GPU performance in track reconstruction →
 Algorithm architecture suitable for parallelization.
- Segment Linking:

Sanl

A highly parallelizable track reconstruction algorithm

- Moves away from sequential Kalman filter based algorithms → <u>mkFit project</u> tries to make the most out of that.
- Relies on local hits in the tracker to build short tracks.
- Short tracks linked to form progressively longer tracks.
- Selects objects from intermediate collections to create a Track Candidate collection with high efficiency and low fake rate.
- Inspired by <u>XFT algorithm</u> in the CDF at the Tevatron.
- Prototype presented in <u>ICHEP 2016</u>.

CMS Outer Tracker @ HL-LHC

0.0

E¹²⁰⁰

800-

600

400-

200

- CMS HL-LHC
 outer tracker
 ideal for algorithm
 application:
 - Closely-spaced
 sensors ⇒
 - Local hits (stubs) above p⊤ threshold (0.8 GeV).
- Stubs instead of hits ⇒
 - Up to ×7.5 reduction of combinatorics:
 - E.g. 5.9k vs. 36k in 1st layer.

Linking Stubs

17 Jun 2022

ego

Linking Segments

UC San Diego

17 Jun 2022

Manos Vourliotis

Linking Pixel Segments

Track Candidate Collection

- Final Track Candidate (TC) collection includes:
 - Pixel Quintuplets (pT5) → Performance driver.
 - Unlinked **Pixel Segments (pLS)** \rightarrow Important at low p_T and high |η|.
 - Pixel triplets (pT3)
 → Regain low p_T efficiency.
 - Quintuplets (T5)
 - → Important for **displaced** tracks.

Outer tracker

Outer tracker

Inner tracke

Inner tracker

Inner tracker

Physics Performance: Efficiency

- Efficiency vs. $p_T \& \eta$ checked in $t\bar{t}$ sample in PU200.
- Denominator: All simulated tracks passing:
 - $|d_z| < 30 \text{ cm}$
 - $|d_{xv}| < 2.5 \text{ cm}$
- Numerator: Simulated tracks matched to TC track (>75% hits).

Physics Performance: Efficiency

- Efficiency vs. d_{xy} checked in muon gun sample with displaced vertex uniformly distributed in a (5 cm)³ cube around the interaction point.
- Denominator: All simulated tracks passing:
 - $|d_z| < 30 \text{ cm}$
- Numerator: Simulated tracks matched to TC track (>75% hits).

Physics Performance: Fake Rate

- Fake rate vs. $p_T \& \eta$ checked in $t\bar{t}$ sample in PU200.
- Denominator: All TC tracks.
- Numerator: TC tracks NOT matched to simulated track (>75% hits).

Manos Vourliotis

GPU Architecture

D	CPU	GPU
	$\mathcal{O}(64)$ cores	O(100) - O(1000) cores
	~2 Flops (Intel Xeon)	15 Flops (NVIDIA Tesla V100)
	Low latency	High latency (device-host memory transfers)
	Good for serial processing	Good for parallel processing

- \Rightarrow GPU programming requires:
 - Suitable algorithm (=parallelizable).
 - Programming tricks
 (≈clever memory usage).
- Efficiently take advantage of:
 - Multitude of computing units.
 - Different memory levels (size vs. speed trade-off).

GPU Implementation

- Data stored in Structure of Arrays (**SoA**) format \Rightarrow Appropriate for parallelized access.
- Custom cache allocation for optimized memory assignment.
- Truncate number of objects based on final occupancy ⇒
 Minimize memory footprint.
- Full implementation on NVIDIA Tesla V100: <u>https://github.com/SegmentLinking/TrackLooper</u>

GPU Implementation

• Kernels: Independent set operations on separate processing element.

- Each kernel = Single Instruction, Multiple Data (SIMD) →
 Same steps applied to different objects →
 Local nature of Segment Linking.
- Speed up by **multi-streaming**: Run parts of kernels in different streams.
 - Memory transfers also "hidden" by concurrent computations.

Timing

- Timing measurements in $t\bar{t}$ sample in PU200.
 - Only algorithm execution →
 Final device to host memory transfer excluded.
- 1-stream: t ≈ 32 ms
- 8-stream: t ≈ 26 ms
 - ~20% timing improvement by exploiting multi-streaming.
- Comparable with latest CMS tracking (~40 ms) on CPU.
- Comparable also price-wise →
 2× 32-core Skylake Gold Xeon processors ≈ NVIDIA Tesla V100.

Future Updates

- Physics-wise:
 - Stretch performance to its limits \rightarrow Further selection optimization for **better efficiency** and **lower fake rate**.
 - Improved **displaced tracks** reconstruction.
 - Incorporate latest developments (e.g. patatrack pixel tracks)
- Computing-wise:
 - Optimize algorithms for complex physics parameter calculations.
 - Extend usage of alternate data types → Half precision.
 - Improve **memory coalescence** ⇒ Timing reduction.
- The Great Design:
 CMS software integration for HLT and offline usage.

Summary

- Segment Linking:
 - A highly parallelizable track reconstruction algorithm.
 - Aimed at facing HL-LHC challenges.
 - Successfully implemented on GPU.
 - Competitive physics performance (efficiency and fake rate).
 - Timing comparable with current CMS HLT tracking algorithms.
 - More improvements and CMS integration planned for the future.