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�estions & cues

Why asymptotic symmetries and charges? [Komar ’59; ADM ’60; BMS ’62]

Universal features of solutions to Einstein’s equations

Hints to holography and in particular flat holography

Irrespective of holography. . .

. . . a solution is captured by a set fields defined on a conformal
boundary and obeying conformal boundary dynamics [Penrose ’63]

Can we compute the charges from a boundary perspective?

Yes as a synthesis of bry. symmetry and dynamics [Ciambelli, Marteau ’18]

What is Carrollian geometry? [Lévy–Leblond ’65; Sen Gupta ’65]

Pseudo-Riemannian geometry at vanishing speed of light



Why Carrollian dynamics?

Asymptotically flat spacetimes→ Carrollian boundary geometry

What is the Cotton? [Émile Cotton 1899]

Covariant derivative of the Einstein tensor in Riemannian
geometries – remarkable in 3 dimensions

Admits Carrollian relatives on Carrollian Geometries

The main message in 4-dim Ricci-flat spactimes

Boundary energy, momentum and Co�on play dual roles and

carry part of the infinite Chthonian information required for
reconstructing the bulk

generate infinite dual towers of charges determined from a
boundary account
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A new asymptotic structure

From AdSn to flatn asymptotics

Λ = − (n−1)(n−2)
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k ≡ boundary velocity of light↔ k → 0 Carrollian limit

The null bry. I ± is a Carrollian geometry in n− 1 dimensions



Carrollian geometry [Lévy-Leblond ’65; Duval et al. ’14; Bekaert et al. ’16]

Basic ingredients in d + 1 dimensions (coordinates t, x)

degenerate metric: ds2 = 0×
(
Ωdt − bidx i

)2
+ aijdx idx j

field of observers: 1
Ω∂t (t should be spelled u)

clock form: eee = Ωdt − bidx i (Ehresmann connection)

General covariance

Carrollian di�eomorphisms: t ′ = t ′(t, x) x′ = x′(x)



Conseqences of the bry. Carrollian structure

I – Ricci-flat spacetime reconstruction in n dimensions

should be Weyl invariant and Carrollian covariant wrt the n− 1
-dim conformal bry. – gauges as Bondi, Newmann–Unti are not

II – Flat holography - if it exists

calls for a Carrollian conformal field theory on an n− 1-dim bry.
e.g. Ricci-flat4 dual to CCFT3 – rather than CFT2



Dynamics

General-covariant action and energy–momentum tensor

Pseudo-Riemannian spacetimes in d + 1 dimensions

Tµν =
2√−g

δS
δgµν

Weyl invariance→ Tµµ = 0

general covariance (ξ = ξµ(t, x)∂µ di�eos)→ ∇µTµν = 0

ξ conformal Killing→ Iµ = ξνTµν Qξ =
∫

Σd
∗I conserved

Carrollian-covariant action, energy and momentum
Πij = 2√

aΩ
δS
δaij

energy–stress tensor

Πi = 1√
aΩ

δS
δbi

energy flux

Π = − 1√
a

(
δS
δΩ + bi

Ω
δS
δbi

)
energy density



In Carrollian spacetimes

Weyl covariance→ Πi
i = Π

Carollian covariance (ξ = ξt(t, x)∂t + ξi(x)∂i di�eos)

→
{

1
ΩD̂tΠ + D̂iΠ

i + Πijξij = 0 time

D̂iΠ
i
j + 2Πi$ij = −

(
1
ΩD̂tδ

i
j + ξi

j

)
Pi space

→ momentum Pi

Conserved currents and charges

Carrollian current: Carrollian scalar κ and vector K i

Carrollian divergence: K = 1
ΩD̂tκ+ D̂jK j

Charge: QK =
∫

Σd
ddx
√

a
(
κ+ biK i

)
conserved if K = 0

Nœther

Dynamics plus invariance→ conservation



Carrollian conformal isometries ξ = ξt∂t + ξi∂i

Conformal Killings via Lξaij and Lξ
1
Ω∂t but not Lξeee

κ = ξiPi − ξ t̂Π and K i = ξjΠ i
j − ξ t̂Πi ξ t̂ = ξt − ξi bi

Ω

not conserved: K = −ΠiLξei [Petkou, Petropoulos, Rivera-Betancour, Siampos ’22]

Remarkable property [Ciambelli, Leigh, Marteau, Petropoulos ’19]

ξi
j=

1
2Ω aik

(
∂takj − akj∂t ln

√
a
)

= 0⇔ aij(t, x) = eσ(t,x)āij(x)⇔
conf. Carroll isom. ≡ conf. isom. of āij(x) n supertranslations
d + 1 = 3→ so(3, 1) n supertranslations ≡ BMS4



In summary

Main messages

Null boundaries in asymptotically flat spacetimes are
Carrollian geometries – zero speed of light

Carrollian geometries with ξij = 0 have an infinite tower of
conformal Killings

Conformal-Killing charges exist but are not always
conserved



Highlights

1 Plan & motivations

2 Asymptotic flatness & Carrollian boundaries

3 Asymptotics, reconstruction and AdS

4 Back to Ricci-flat spacetimes

5 Outlook



Pure gravity – asymptotically flat or AdS

Basic field in pure gravity: metric GAB{
r, t, x i

}
, i = 1, . . . , d with a gauge fixing (n = d + 2 conditions)

Usual programme, methods and motivations

determine the asymptotic symmetry group (large-r)

find the solutions as O (1/rn) with coe�icients f (t, x)
defined on the conformal boundary

compute the associated charges and their algebras

Our threefold goal

reach manifest Weyl invariance and general covariance for
the dynamics on the n− 1-dim conformal boundary

define charges from a purely boundary perspective

n = 4: electric versus magnetic charges e.g. mass vs. nut



Einstein spacetimes covariantly reconstructed

Solution space with incomplete Newman–Unti gauge and

mild boundary conditions [Ciambelli, Marteau, Petropoulos, Ruzziconi ’20 ]

n(n−1)+2
2 Einstein’s equations→ n2 − 3 functions of (t, x)

→ boundary data µ, ν, . . . ∈ {0, 1, . . . , n− 2 = d}
gµν symmetric← n(n−1)

2
boundary metric
Tµν symmetric and traceless← n(n−1)

2 − 1
conformal boundary energy–momentum tensor
uµ ← n− 2 (due to the gauge incompleteness Gri 6= 0)
boundary normalized vector field

remaining n− 1 Einstein’s equations ∇µTµν = 0



On arbitrary (boundary) geometry gµν of dim d + 1

Tµν = ε
uµuν

k2 + phµν + τµν +
uµqµ

k2 +
uνqµ

k2

‖u‖2 = −k2 hµν = gµν + uµuν
k2

qµ, τµν transverse plus ε = dp and τµµ = 0

→ “relativistic fluid”

In 4-dim bulk (3-dim boundary – d = 2): the Cotton tensor

Cµν = η ρσ
µ ∇ρ

(
Rνσ −

R
4

gνσ

)
symmetric, traceless, ∇µCµν = 0

decomposed along uµ: cµ, cµν transverse plus cµµ = 0

Cµν = c
uµuν

k2 +
c
2

hµν + cµν +
uµcµ

k2 +
uνcµ

k2

Cµν 6= 0⇔ non-conformally flat bry.↔ asymptotically
locally AdS bulk



In n = 4 dimensions Λ = −3k2

General solution: 6 + 5 + 2 arbitrary boundary data

ds2 = −k2
(
Ωdt − bidx i

)2
+ aijdx idx j → {c, cµ, cµν}

Tµν → {ε = 2p, qµ, τµν}
u = uµdxµ→

{
σµν , ωµν ,A = 1

k2

(
a− Θ

2 u
)
,Dµ

}

ds2
Einstein = 2

u
k2 (dr + rA) + r2ds2 − 2

r
k2σµνdxµdxν +

S
k4

+
8πG
k4r

[
εu2 +

4u
3

(
q− 1

8πG
∗ c
)

+
2k2

3

(
τττ +

1
8πGk2 ∗ ccc

)]
+

1
r2

(
cγ

u2

k4 + · · ·
)

+O (1/r3)

Sµν = 2u(µDλ

(
σ λ
ν) + ω λ

ν)

)
− R

2 uµuν +2ω λ
(µ σν)λ+(σ2 + k4γ2) hµν ,

γ2 = 1
2k4ωαβω

αβ



What the Cotton can do in AdS

ξ bry. conformal Killing→ Iµ = ξνTµν and IµCot = ξνCµν

Qξ =

∫
Σ2

∗I and QCotξ =

∫
Σ2

∗ICot

electric and magnetic dual conserved charges (bulk mass vs. nut)

Remark: QCotξ ∼ magnetic Komar charges

“Self-duality”: q− 1
8πG ∗ c = 0 and τττ + 1

8πGk2 ∗ ccc = 0→
resummed bulk metric→ Petrov algebraically special

Why? Tµν and Cµν enter asymptotically the bulk Weyl

Limitation in AdS: at most 10 Killing fields (d + 1 = 3)

Extendable in Ricci-flat spacetimes – more interesting
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Ricci-flat in incomplete Newman–Unti gauge

Full solution space in n = 4 [Brussels & Paris groups]

ds2
Ricci-flat described in terms of 2 + 1 Carrollian boundary data

Carrollian geometry (6)
degenerate metric (3)
Ehresmann connection (3)

Carrollian “fluid” (5)
energy (1)
momenta – heat current (2) and stress tensor (2)

Carrollian-fluid “velocity” (2) – hydro-frame freedom

Carrollian dynamical shear (2) Cij

infinite number of further Carrollian data obeying
Carrollian dynamics – at every O (1/rn): Chthonian



Ricci-flat spacetimes up to O (1/r3)

ds2
Ricci-flat = 2µµµ

(
dr + rϕaµµµ

a − r
θ

2
µµµ+ ∗µµµbD̂b ∗$ −

1
2
µµµaD̂bC

b
a

)
+

(
ρ2 +

CcdC cd

8

)
d`2 + Cab

(
rµµµaµµµb − ∗$ ∗µµµaµµµb)

+
1
r

[(
8πGε− K̂

)
µµµ2 +

32πG
3

(
πa −

1
8πG

∗ ψa

)
µµµµµµa

− 16πG
3

Eabµµµ
aµµµb
]

+
1
r2

[
∗$cµµµ2 + · · ·

]
+ O (1/r3)



Important features

Weyl invariance & Carrollian covariance wrt boundary

shear→ news↔ bulk gravitational radiation

Carrollian fluid with Π, Πi , Πij , P i under external force –
free if zero shear

always ξij = 0⇔ conformal Carrollian group generated by
so(3, 1) n supertranslations ≡ BMS4

∃ Carollian Co�on in the form
ΠCot, Πi

Cot, Πij
Cot, P i

Cot

Π′Cot, Π′iCot, Π′ijCot, P ′iCot

obeying Carrollian dynamics



Spin off: towers of Carrollian charges

4-dim Ricci-flat bulk→ 3-dim Carrollian boundary

conformal ξ ∈ BMS4 ≡ bulk asymptotic symmetry group

ξ plus momentum and energy data→ current→ charge

From the Carrollian fluid: electric tower

Qξ conserved in the absence of shear and for Lξeee = 0

From the Carrollian Cotton: magnetic tower

QCotξ conserved for Lξeee = 0

Self-dual tower

QCot′ξ conserved ∀ξ

Other towers

From Chthonian Carrollian data associated with the subleading
O (1/rn) terms in the bulk action – under construction



In summary for n = 4

Main messages

Bulk Ricci-flatness↔ boundary Carrollian dynamics with
infinite number of fields

Conformal Carrollian isometry: BMS4 – infinite and
matches the asymptotic bulk symmetries

Multiple infinte towers of not-always-conserved charges –
two from the Co�on

electric vs. magnetic and even self-dual towers

calls for comparison with bulk approaches [Godazgar, Godazgar, Pope ’18–21]
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�otable facts

n-dim Ricci-flat bulk↔ n− 1-dim Carrollian boundary

bulk reconstruction↔ infinite Chthonian Carrollian dofs

towers of charges↔ Carrollian isometries & dynamics

n = 4↔ prominent role of the Co�on and BMS4

Hints for flat “holography”

Expected duality flat4/CCFT3

local (Chthonian)?
Carrollian CFTs (quantum)? [Le Bellac, Lévy- Leblond ’67 & ’73; Souriau ’85;

Duval et al. ’14; Bagchi et al. ’20; Henneaux, Salgado–Rebolledo ’79 & ’21; Rivera-B., Vila�e ’22]

What about flat4/CFT2 celestial holography? [Harvard school]

based on “SL(2,C)” invariance – vs. BMS4

developed mostly for radiation S-matrix
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