FLAT ASYMPTOTICS, CHARGES AND DUAL CHARGES WHAT THE COTTON CAN DO

Marios Petropoulos

HEP2022 CONFERENCE ARISTOTI E UNIVERSITY OF THESSALONIKI THESSALONIKI

June 2022

HIGHLIGHTS

1 Plan $\dot{\sigma}$ motivations

- 2 Asymptotic flatness $\mathring{\sigma}$ Carrollian boundaries
- **3** Asymptotics, reconstruction and AdS
- **4** BACK TO RICCI-FLAT SPACETIMES
- 5 OUTLOOK

QUESTIONS & CUES

Why asymptotic symmetries and charges? [Komar '59; ADM '60; BMS '62]

- Universal features of solutions to Einstein's equations
- Hints to holography and in particular flat holography

IRRESPECTIVE OF HOLOGRAPHY...

...a solution is captured by a set fields defined on a conformal boundary and obeying conformal boundary dynamics [Penrose '63]

CAN WE COMPUTE THE CHARGES FROM A BOUNDARY PERSPECTIVE? Yes as a synthesis of bry. symmetry and dynamics [Ciambelli, Marteau '18]

WHAT IS CARROLLIAN GEOMETRY? [LÉVY-LEBLOND '65; SEN GUPTA '65] Pseudo-Riemannian geometry at vanishing speed of light

WHY CARROLLIAN DYNAMICS?

Asymptotically flat spacetimes \rightarrow Carrollian boundary geometry

WHAT IS THE COTTON? [ÉMILE COTTON 1899]

- Covariant derivative of the Einstein tensor in Riemannian geometries remarkable in 3 dimensions
- Admits Carrollian relatives on Carrollian Geometries

The main message in 4-dim Ricci-flat spactimes

Boundary energy, momentum and Cotton play dual roles and

- carry part of the *infinite Chthonian information* required for reconstructing the bulk
- generate infinite *dual towers of charges* determined from a boundary account

Starring

A. CAMPOLEONI L. CIAMBELLI A. DELEANTE R. LEIGH C. MARTEAU N. MITTAL Α. Ρετκου M. Petropoulos D. RIVERA R. Ruzziconi K. SIAMPOS M. VII ATTE

Aristotle University of Thessaloniki, Ecole Polytechnique, TU Wien, University of Athens, University of British Columbia, University of Illinois, Université Libre de Bruxelles, Université de Mons – since 2017

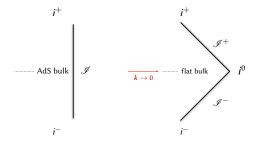
HIGHLIGHTS

1 Plan $\dot{\sigma}$ motivations

- 2 Asymptotic flatness $\dot{\sigma}$ Carrollian boundaries
- **3** Asymptotics, reconstruction and AdS
- **4** BACK TO RICCI-FLAT SPACETIMES
- 5 OUTLOOK

A NEW ASYMPTOTIC STRUCTURE

From AdS_n to flat_n asymptotics $\Lambda = -\frac{(n-1)(n-2)}{2}k^2 \rightarrow 0$



 $k \equiv$ BOUNDARY VELOCITY OF LIGHT $\leftrightarrow k \rightarrow 0$ CARROLLIAN LIMIT The null bry. \mathscr{I}^{\pm} is a Carrollian geometry in n-1 dimensions

Basic ingredients in d + 1 dimensions (coordinates t, \mathbf{x})

- degenerate metric: $ds^2 = 0 \times (\Omega dt b_i dx^i)^2 + a_{ij} dx^i dx^j$
- field of observers: $\frac{1}{\Omega}\partial_t$ (*t* should be spelled *u*)
- clock form: $\boldsymbol{e} = \Omega dt b_i dx^i$ (Ehresmann connection)

GENERAL COVARIANCE

Carrollian diffeomorphisms: $t' = t'(t, \mathbf{x}) \quad \mathbf{x}' = \mathbf{x}'(\mathbf{x})$

Consequences of the BRY. CARROLLIAN STRUCTURE

I – RICCI-FLAT SPACETIME RECONSTRUCTION IN *n* DIMENSIONS should be *Weyl invariant and Carrollian covariant* wrt the n - 1-dim conformal bry. – gauges as Bondi, Newmann–Unti are not

II – Flat holography - *if it exists*

calls for a *Carrollian conformal field theory* on an n - 1-dim bry. e.g. Ricci-flat₄ dual to CCFT₃ - rather than CFT₂

Dynamics

GENERAL-COVARIANT ACTION AND ENERGY-MOMENTUM TENSOR

Pseudo-Riemannian spacetimes in d + 1 dimensions

$$T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu\nu}}$$

• Weyl invariance $\rightarrow T^{\mu}_{\ \mu} = 0$

- general covariance $(\xi = \xi^{\mu}(t, \mathbf{x})\partial_{\mu} \text{ diffeos}) \rightarrow \nabla_{\mu}T^{\mu\nu} = 0$
- ξ conformal Killing $\rightarrow I^{\mu} = \xi_{\nu} T^{\mu\nu}$ $Q_{\xi} = \int_{\Sigma_d} *I$ conserved

CARROLLIAN-COVARIANT ACTION, ENERGY AND MOMENTUM

$$\begin{cases} \Pi^{ij} = \frac{2}{\sqrt{a\Omega}} \frac{\delta S}{\delta a_{ij}} & \text{energy-stress tensor} \\ \Pi^{i} = \frac{1}{\sqrt{a\Omega}} \frac{\delta S}{\delta b_{i}} & \text{energy flux} \\ \Pi = -\frac{1}{\sqrt{a}} \left(\frac{\delta S}{\delta \Omega} + \frac{b_{i}}{\Omega} \frac{\delta S}{\delta b_{i}} \right) & \text{energy density} \end{cases}$$

IN CARROLLIAN SPACETIMES

- Weyl covariance $\rightarrow \prod_{i=1}^{i} \prod_{j=1}^{i}$
- Carollian covariance $(\xi = \xi^t(t, \mathbf{x})\partial_t + \xi^i(\mathbf{x})\partial_i$ diffeos)

$$\rightarrow \begin{cases} \frac{1}{\Omega} \hat{\mathscr{D}}_t \Pi + \hat{\mathscr{D}}_i \Pi^i + \Pi^{ij} \xi_{ij} = 0 & \text{time} \\ \hat{\mathscr{D}}_i \Pi^i_{\ j} + 2\Pi^i \varpi_{ij} = -\left(\frac{1}{\Omega} \hat{\mathscr{D}}_t \delta^i_j + \xi^i_{\ j}\right) P_i & \text{space} \end{cases}$$

 \rightarrow momentum P_i

Conserved currents and charges

- Carrollian current: Carrollian scalar κ and vector K^i
- Carrollian divergence: $\mathcal{K} = \frac{1}{\Omega} \hat{\mathscr{D}}_t \kappa + \hat{\mathscr{D}}_j K^j$
- Charge: $Q_{\mathcal{K}} = \int_{\Sigma_d} \mathrm{d}^d x \sqrt{a} \left(\kappa + b_i \mathcal{K}^i\right)$ conserved if $\mathcal{K} = 0$

NŒTHER

Dynamics plus invariance \rightarrow conservation

Carrollian conformal isometries $\xi = \xi^t \partial_t + \xi^i \partial_i$

CONFORMAL KILLINGS VIA $\mathscr{L}_{\xi} a_{ij}$ AND $\mathscr{L}_{\xi} \frac{1}{\Omega} \partial_t$ BUT NOT $\mathscr{L}_{\xi} e$ • $\kappa = \xi^i P_i - \xi^{\hat{t}} \Pi$ and $K^i = \xi^j \Pi_j^i - \xi^{\hat{t}} \Pi^i$ $\xi^{\hat{t}} = \xi^t - \xi^i \frac{b_i}{\Omega}$ • not conserved: $\mathcal{K} = -\Pi^i \mathscr{L}_{\xi} e_i$ [Petkou, Petropoulos, Rivera-Betancour, Siampos '22]

REMARKABLE PROPERTY [CIAMBELLI, LEIGH, MARTEAU, PETROPOULOS '19]

 $\xi_{j}^{i} = \frac{1}{2\Omega} a^{ik} \left(\partial_{t} a_{kj} - a_{kj} \partial_{t} \ln \sqrt{a} \right) = 0 \Leftrightarrow a_{ij}(t, \mathbf{x}) = e^{\sigma(t, \mathbf{x})} \bar{a}_{ij}(\mathbf{x}) \Leftrightarrow$ conf. Carroll isom. \equiv conf. isom. of $\bar{a}_{ij}(\mathbf{x}) \ltimes$ supertranslations $d + 1 = 3 \rightarrow \mathfrak{so}(3, 1) \ltimes$ supertranslations \equiv BMS₄

IN SUMMARY

MAIN MESSAGES

- Null boundaries in asymptotically flat spacetimes are *Carrollian geometries* – zero speed of light
- Carrollian geometries with $\xi^{ij} = 0$ have an *infinite tower of* conformal Killings
- Conformal-Killing charges exist but are *not always conserved*

HIGHLIGHTS

- 1 Plan & motivations
- 2 Asymptotic flatness \mathcal{C} Carrollian boundaries

3 Asymptotics, reconstruction and AdS

- **4** BACK TO RICCI-FLAT SPACETIMES
- 5 OUTLOOK

Pure gravity – asymptotically flat or AdS

BASIC FIELD IN PURE GRAVITY: METRIC G_{AB} $\{r, t, x^i\}, i = 1, ..., d$ with a gauge fixing (n = d + 2 conditions)

USUAL PROGRAMME, METHODS AND MOTIVATIONS

- determine the asymptotic symmetry group (large-*r*)
- find the solutions as O (1/rⁿ) with coefficients f(t, x) defined on the conformal boundary
- compute the associated charges and their algebras

Our threefold goal

- o reach manifest Weyl invariance and general covariance for the dynamics on the *n* − 1-dim conformal boundary
- define charges from a purely boundary perspective
- *n* = 4: *electric versus magnetic charges* e.g. mass vs. nut

EINSTEIN SPACETIMES COVARIANTLY RECONSTRUCTED

- $\frac{n(n-1)+2}{2}$ Einstein's equations $\rightarrow n^2 3$ functions of (t, \mathbf{x})
 - \rightarrow boundary data $\mu, \nu, \ldots \in \{0, 1, \ldots, n-2 = d\}$
 - $g_{\mu\nu}$ symmetric $\leftarrow \frac{n(n-1)}{2}$ boundary metric
 - $T_{\mu\nu}$ symmetric and traceless $\leftarrow \frac{n(n-1)}{2} 1$ conformal boundary energy-momentum tensor
 - $u^{\mu} \leftarrow n 2$ (due to the gauge incompleteness $G_{ri} \neq 0$) boundary normalized vector field
- remaining n-1 Einstein's equations $\nabla_{\mu} T^{\mu\nu} = 0$

ON ARBITRARY (BOUNDARY) GEOMETRY $g_{\mu\nu}$ OF DIM d + 1 $T^{\mu\nu} = \varepsilon \frac{u^{\mu}u^{\nu}}{k^{2}} + ph^{\mu\nu} + \tau^{\mu\nu} + \frac{u^{\mu}q^{\mu}}{k^{2}} + \frac{u^{\nu}q^{\mu}}{k^{2}}$ • $\|u\|^{2} = -k^{2}$ $h^{\mu\nu} = g^{\mu\nu} + \frac{u^{\mu}u^{\nu}}{k^{2}}$ • $q^{\mu}, \tau^{\mu\nu}$ transverse plus $\varepsilon = dp$ and $\tau^{\mu}_{\ \mu} = 0$ \rightarrow "relativistic fluid"

IN 4-DIM BULK (3-DIM BOUNDARY – d = 2): THE COTTON TENSOR $C_{\mu\nu} = \eta_{\mu}^{\ \rho\sigma} \nabla_{\rho} \left(R_{\nu\sigma} - \frac{R}{4} g_{\nu\sigma} \right)$ symmetric, traceless, $\nabla_{\mu} C^{\mu\nu} = 0$

• decomposed along u^{μ} : c^{μ} , $c^{\mu\nu}$ transverse plus $c^{\mu}_{\ \mu} = 0$

$$C_{\mu\nu} = c \frac{u^{\mu} u^{\nu}}{k^2} + \frac{c}{2} h^{\mu\nu} + c^{\mu\nu} + \frac{u^{\mu} c^{\mu}}{k^2} + \frac{u^{\nu} c^{\mu}}{k^2}$$

• $C_{\mu\nu} \neq 0 \Leftrightarrow$ non-conformally flat bry. \leftrightarrow asymptotically *locally* AdS bulk

In n = 4 dimensions $\Lambda = -3k^2$

GENERAL SOLUTION: 6 + 5 + 2 ARBITRARY BOUNDARY DATA • $ds^2 = -k^2 \left(\Omega dt - b_i dx^i\right)^2 + a_{ij} dx^i dx^j \rightarrow \{c, c^{\mu}, c^{\mu\nu}\}$ • $T_{\mu\nu} \rightarrow \{\varepsilon = 2p, q^{\mu}, \tau^{\mu\nu}\}$ • $\mathbf{u} = u_{\mu} dx^{\mu} \rightarrow \{\sigma^{\mu\nu}, \omega^{\mu\nu}, \mathbf{A} = \frac{1}{k^2} \left(\mathbf{a} - \frac{\Theta}{2}\mathbf{u}\right), \mathcal{D}_{\mu}\}$

$$ds_{\text{Einstein}}^{2} = 2\frac{\mathbf{u}}{k^{2}}(dr + r\mathbf{A}) + r^{2}ds^{2} - 2\frac{r}{k^{2}}\sigma_{\mu\nu}dx^{\mu}dx^{\nu} + \frac{S}{k^{4}} \\ + \frac{8\pi G}{k^{4}r}\left[\varepsilon\mathbf{u}^{2} + \frac{4\mathbf{u}}{3}\left(\mathbf{q} - \frac{1}{8\pi G}*\mathbf{c}\right) \\ + \frac{2k^{2}}{3}\left(\boldsymbol{\tau} + \frac{1}{8\pi Gk^{2}}*\boldsymbol{c}\right)\right] + \frac{1}{r^{2}}\left(c\gamma\frac{\mathbf{u}^{2}}{k^{4}} + \cdots\right) \\ + O\left(\frac{1}{r^{3}}\right) \\ S_{\mu\nu} = 2u_{(\mu}\mathscr{D}_{\lambda}\left(\sigma_{\nu}\right)^{\lambda} + \omega_{\nu}\right)^{\lambda}\right) - \frac{\mathscr{R}}{2}u_{\mu}u_{\nu} + 2\omega_{(\mu}{}^{\lambda}\sigma_{\nu)\lambda} + (\sigma^{2} + k^{4}\gamma^{2})h_{\mu\nu}, \\ \gamma^{2} = \frac{1}{2k^{4}}\omega_{\alpha\beta}\omega^{\alpha\beta}$$

What the Cotton can do in AdS

 ξ bry. conformal Killing $\rightarrow I^{\mu} = \xi_{\nu} T^{\mu\nu}$ and $I^{\mu}_{Cot} = \xi_{\nu} C^{\mu\nu}$

$$Q_{\xi} = \int_{\Sigma_2} *I \quad \text{and} \quad Q_{\text{Cot}\xi} = \int_{\Sigma_2} *I_{\text{Cot}}$$

electric and magnetic dual conserved charges (bulk mass vs. nut)

- Remark: Q_{Cotξ} ~ magnetic Komar charges
- "Self-duality": $\mathbf{q} \frac{1}{8\pi G} * \mathbf{c} = 0$ and $\boldsymbol{\tau} + \frac{1}{8\pi Gk^2} * \boldsymbol{c} = 0 \rightarrow$ resummed bulk metric \rightarrow Petrov algebraically special
- Why? $T_{\mu\nu}$ and $C_{\mu\nu}$ enter asymptotically the bulk Weyl
- Limitation in AdS: at most 10 Killing fields (d + 1 = 3)

Extendable in Ricci-flat spacetimes - more interesting

HIGHLIGHTS

- 1 Plan & motivations
- 2 Asymptotic flatness $\mathring{\sigma}$ Carrollian boundaries
- 3 Asymptotics, reconstruction and AdS
- **4** BACK TO RICCI-FLAT SPACETIMES
- 5 OUTLOOK

RICCI-FLAT IN INCOMPLETE NEWMAN–UNTI GAUGE

Full solution space in n = 4 [Brussels σ Paris groups]

 $ds^2_{Ricci-flat}$ described in terms of 2 + 1 Carrollian boundary data

- Carrollian geometry (6)
 - degenerate metric (3)
 - Ehresmann connection (3)
- Carrollian "fluid" (5)
 - energy (1)
 - momenta heat current (2) and stress tensor (2)
- Carrollian-fluid "velocity" (2) hydro-frame freedom
- Carrollian dynamical shear (2) C_{ij}
- *infinite* number of further Carrollian data obeying Carrollian dynamics – at every O (1/rⁿ): Chthonian

RICCI-FLAT SPACETIMES UP TO O $(1/r^3)$

$$ds_{\text{Ricci-flat}}^{2} = 2\mu \left(dr + r\varphi_{a}\mu^{a} - r\frac{\theta}{2}\mu + *\mu^{b}\hat{\mathscr{D}}_{b} * \varpi - \frac{1}{2}\mu^{a}\hat{\mathscr{D}}_{b}\mathscr{C}_{a}^{b} \right) + \left(\rho^{2} + \frac{\mathscr{C}_{cd}\mathscr{C}^{cd}}{8} \right) d\ell^{2} + \mathscr{C}_{ab} \left(r\mu^{a}\mu^{b} - *\varpi *\mu^{a}\mu^{b} \right) + \frac{1}{r} \left[\left(8\pi G\varepsilon - \hat{\mathscr{K}} \right) \mu^{2} + \frac{32\pi G}{3} \left(\pi_{a} - \frac{1}{8\pi G} * \psi_{a} \right) \mu\mu^{a} - \frac{16\pi G}{3} E_{ab}\mu^{a}\mu^{b} \right] + \frac{1}{r^{2}} \left[*\varpi c\mu^{2} + \cdots \right] + O\left(\frac{1}{r^{3}} \right)$$

IMPORTANT FEATURES

- Weyl invariance & Carrollian covariance wrt boundary
- shear \rightarrow news \leftrightarrow bulk gravitational radiation
- Carrollian fluid with Π, Πⁱ, Π^{ij}, Pⁱ under external force free if zero shear
- always $\xi_{ij} = 0 \Leftrightarrow$ conformal Carrollian group generated by $\mathfrak{so}(3, 1) \ltimes$ supertranslations $\equiv BMS_4$
- \exists Carollian Cotton in the form
 - $\Pi_{\text{Cot}}, \Pi_{\text{Cot}}^{i}, \Pi_{\text{Cot}}^{ij}, P_{\text{Cot}}^{i}$ • $\Pi_{\text{Cot}}^{\prime}, \Pi_{\text{Cot}}^{\prime i}, \Pi_{\text{Cot}}^{\prime ij}, P_{\text{Cot}}^{\prime i}$

obeying Carrollian dynamics

SPIN OFF: TOWERS OF CARROLLIAN CHARGES

4-dim Ricci-flat bulk \rightarrow 3-dim Carrollian boundary

- conformal $\xi \in BMS_4 \equiv$ bulk asymptotic symmetry group
- ξ plus momentum and energy data \rightarrow current \rightarrow charge

FROM THE CARROLLIAN FLUID: ELECTRIC TOWER

 Q_{ξ} conserved in the absence of shear and for $\mathscr{L}_{\xi} \boldsymbol{e} = 0$

From the Carrollian Cotton: MAGNETIC TOWER $Q_{\text{Cot}\xi}$ conserved for $\mathscr{L}_{\xi} \boldsymbol{e} = 0$

Self-dual tower

 $Q_{\operatorname{Cot'}\xi}$ conserved $\forall \xi$

OTHER TOWERS

From Chthonian Carrollian data associated with the subleading $O(1/r^n)$ terms in the bulk action – under construction

In summary for n = 4

MAIN MESSAGES

- Bulk Ricci-flatness ↔ boundary Carrollian dynamics with infinite number of fields
- Conformal Carrollian isometry: *BMS*₄ *infinite* and matches the asymptotic bulk symmetries
- *Multiple* infinite towers of *not-always-conserved* charges two from the *Cotton*
- electric vs. magnetic and even self-dual towers

calls for comparison with bulk approaches [Godazgar, Godazgar, Pope '18-21]

HIGHLIGHTS

- 1 Plan & motivations
- 2 Asymptotic flatness $\mathring{\sigma}$ Carrollian boundaries
- 3 Asymptotics, reconstruction and AdS
- **4** BACK TO RICCI-FLAT SPACETIMES
- 5 OUTLOOK

QUOTABLE FACTS

- *n*-dim Ricci-flat bulk \leftrightarrow *n* 1-dim Carrollian boundary
- bulk reconstruction \leftrightarrow infinite Chthonian Carrollian dofs
- towers of charges ↔ Carrollian isometries & dynamics
- $n = 4 \leftrightarrow$ prominent role of the Cotton and BMS₄

HINTS FOR FLAT "HOLOGRAPHY"

- Expected duality flat₄/CCFT₃
 - local (Chthonian)?
 - Carrollian CFTs (quantum)? [Le Bellac, Lévy- Leblond '67 & '73; Souriau '85;
 - Duval et al. '14; Bagchi et al. '20; Henneaux, Salgado-Rebolledo '79 & '21; Rivera-B., Vilatte '22]
- What about flat₄/CFT₂ celestial holography? [Harvard school]
 - based on " $SL(2, \mathbb{C})$ " invariance vs. BMS₄
 - developed mostly for radiation S-matrix