ATLAS Status and Overview - Highlights

HEP 2022 - 39th Conference on Recent Developments in High Energy Physics and Cosmology - 15-18 June, 2022 Thessaloniki, Greece

Marumi Kado On Behalf of the **ATLAS Collaboration** Università di Roma, Sapienza, CERN and IJCLab (Orsay)

Outline and Disclaimer

Still leaving no stones unturned!

	TLAS SUSY Sea	rches* - 95%	6 CL Lower Limit	S			ATLAS
	Model	Signatur	$\int \mathcal{L} dt [\mathrm{fb}^{-1}]$	Mass limit	:		R
clusive Searches	$\begin{split} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} W \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} (\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \end{split}$	$\begin{array}{c} 0 \ e,\mu \\ mono-jet \\ 0 \ e,\mu \end{array}$ $\begin{array}{c} 1 \ e,\mu \\ ee,\mu\mu \\ 0 \ e,\mu \\ SS \ e,\mu \end{array}$	ATLAS Heavy I Status: March 2022 Model	Particle Sea ℓ, γ Jet	arches* - 95% (s† E ^{miss} ∫ℒdt[fb ⁻¹]	CL Upper Exc	it
n. squarks production	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0}$ $\tilde{b}_{1}\tilde{b}_{1}$ $\tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{\chi}_{2}^{0} \rightarrow b h \tilde{\chi}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow W b \tilde{\chi}_{1}^{0}$ $\tilde{c}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow W b \tilde{\chi}_{1}^{0}$	$ \begin{array}{c} 0-1 \ e, \mu \\ SS \ e, \mu \\ \hline 0 \ e, \mu \\ 2 \ \tau \\ 0-1 \ e, \mu \\ 1 \ e, \mu \\ \end{array} $	Second S	$ \begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \gamma \\ - \\ 2 \gamma \\ multi-chanr \\ qq 1 \ e, \mu \\ 1 \ e, \mu \\ 2 \ e, \mu \end{array} $	ATLAS LC Status: March Model RPV $\tilde{t} \rightarrow \mu q$	2022 Signature	icle Searches* ∫⊥ dt [fb ⁻¹]
3 rd ge. direct	$\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow \tilde{\tau}_{1}bv, \tilde{\tau}_{1} \rightarrow \tau G$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow Z/h\tilde{\chi}_{1}^{0}$ $\tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z$ $\tilde{\chi}^{\pm}\tilde{\chi}_{2}^{0} \text{ via } WZ$	$ \begin{array}{c} 1-2 \tau \\ 0 e, \mu \\ 0 e, \mu \\ 1-2 e, \mu \\ 3 e, \mu \end{array} $ Multiple ℓ /jets	SSM $Z' \rightarrow tt$ SSM $Z' \rightarrow \tau\tau$ Leptophobic $Z' \rightarrow bb$ Leptophobic $Z' \rightarrow tt$ SSM $W' \rightarrow \ell\nu$ SSM $W' \rightarrow \tau\nu$ SSM $W' \rightarrow tb$ HVT $W' \rightarrow WZ \rightarrow \ell\nu qq$ m		$\begin{array}{c} RPV\chi_1^0 \to eev_t\\ GGM\chi_1^0 \to Z\widetilde{G}\\ GMSB\\ GMSB\widetilde{t} \to \ell\widetilde{c}. \end{array}$	<i>eμν/μμν</i> disp dis non-pc di:	$Model$ Bulk RS ($k\pi r_c = 35, \Lambda_F$
EW direct	$\begin{split} \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{\mp} & \text{via } WW \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} & \text{via } Wh \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{2} & \text{via } \tilde{\ell}_{L}/\tilde{\nu} \\ \tilde{\tau}_{1}^{+} \tilde{\chi}_{1}^{\mp} & \text{via } \tilde{\ell}_{L}/\tilde{\nu} \\ \tilde{\tau}_{\tau}^{+}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0} \\ \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{H}\tilde{H}, \tilde{H} \rightarrow h \tilde{G}/Z \tilde{G} \end{split}$	$ee, \mu\mu$ $2 e, \mu$ Multiple ℓ /jets $2 e, \mu$ 2τ $2 e, \mu$ $ee, \mu\mu$ $0 e, \mu$ $4 e, \mu$ $0 e, \mu \ge$	$\begin{array}{c} \textbf{W} \\ $	nodel D (e, μ) 2μ 2μ 2e 2e 2μ 2e 2μ 2e 2μ 2e 2μ 2e 2μ 2e 2μ 2e 2μ 2h 2e 2μ 2h 2e 2μ 2h 2e 2μ 2h 2e 2μ 2h	$\begin{array}{c} \overleftarrow{SO}\\ & GMSB\ \widetilde{\tau} \to \tau \widetilde{G}\\ & AMSB\ pp \to \chi_{12}^{\pm}\\ & AMSB\ pp \to \chi_{12}^{\pm}\\ & Stealth\ SUSY\\ & Split\ SUSY\\ & Split\ SUSY\\ \end{array}$	di: Bulk RS (k , ${}^{0}_{1}, \chi_{1}^{+}\chi_{1}^{-}$ dis ${}^{0}_{1}, \chi_{1}^{+}\chi_{1}^{-}$ lai 2 lai Bulk RS (k Bulk RS (k Bulk RS (k Bulk RS (k Bulk RS (k	Bulk RS $(k\pi r_c = 35, \Lambda_F$ RS1 $(k/\overline{M}_{Pl} = 0.01)$ RS1 $(k/\overline{M}_{Pl} = 0.05)$ RS1 $(k/\overline{M}_{Pl} = 0.1)$ Bulk RS $(k/\overline{M}_{Pl} = 0.5)$ Bulk RS $(k/\overline{M}_{Pl} = 1.0)$
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ $\tilde{\ell}\tilde{\ell}, \ \tilde{\ell} \rightarrow \ell \tilde{G}$	Disapp. trk pixel dE/dx pixel dE/dx Displ. lep pixel dE/dx	Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$ \begin{array}{c} \text{ic DM} & 0 \ e, \mu \\ +a & \text{multi-chanr} \\ \hline 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \\ 0 \ e, \mu, \geq 1 \\ 1 \ \tau \\ \end{array} $	Split SUSY $H \rightarrow s s$ $H \rightarrow s s$ VH with $H \rightarrow s$	$0 \ \ell, 2$ 2 low- $s \rightarrow bbbb 2\ell +$	Bulk RS $(k/\overline{M}_{Pl} = 1.0)$ Bulk RS $(k/\overline{M}_{Pl} = 1.0)$ Bulk RS $(k/\overline{M}_{Pl} = 1.0)$ HVT $(g_F = -0.55, g_H =$ HVT $(g_F = -0.55, g_H =$ HVT $(g_F = -0.55, g_H =$
RPV	$\begin{split} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow \mathcal{Z}\ell \rightarrow \ell\ell\ell \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow WW/\mathcal{Z}\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs \\ \tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow ds \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow q\ell \\ \tilde{\chi}_{2}^{\pm} / \tilde{\chi}_{0}^{0} / \tilde{\chi}_{0}^{0} \tilde{\chi}_{0}^{0} \rightarrow tbs \tilde{\chi}_{1}^{\pm} \rightarrow bbs \end{split}$	3 e,µ 4 e,µ 4 2 e,µ 1 µ 1-2 e,µ	Here the set of the s	$2e/2\mu/\geq 3e$ multi-chanr + X 2(SS)/\geq 3 e 1 e, \mu 1 e, \mu 0 e, \mu - 1 \gamma	$ \begin{array}{c} $	+ X + X dis 2 e, µ + 1 ss low-EMF	HVT $(g_F = -0.55, g_H =$ HVT $(g_F = -0.55, g_H =$
*Only pher simp	a selection of the available manomena is shown. Many of the olified models, c.f. refs. for the	ass limits on n limits are bas assumptions i	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	3 e, μ, τ $3 e, μ, τ$ $2,3,4 e, μ$ $2 μ$ $2,3,4 e, μ (ξ)$ $3 e, μ, τ$ $-$ $-$ $√s = 13 TeV$ partial data	$\begin{array}{c} \Phi(600 \ \mathrm{GeV}) \rightarrow \\ \Phi(1 \ \mathrm{TeV}) \rightarrow s \ s \end{array}$ $W \rightarrow N\ell, N \rightarrow \\ W \rightarrow N\ell, N \rightarrow \end{array}$	s s low-EMF low-EMF $\ell\ell\nu$ displace $\ell\ell\nu$ displace $\ell\ell\nu$ displace $\ell\ell\nu$ displace	HVT $(g_F = 0.14, g_H = 0.14,$

Only a selection of the available mas †Small-radius (large-radius) jets are deno

*Only a selection of the availabl

<u>√s</u> = 8 TeV

√s = 13

partial

*small-radius (large-radius) jets are used in resolved (boosted) events

 † with $\ell=\mu$, e

LHC and HL-LHC Schedule Update

DEFINITION

BUILDINGS

Staying Tuned to ATLAS News and Results

- Check and bookmark our news page
- Follow us on social media (click on the logos)

Instagram

Exciting times: start of Run 3!

CERN <u>News</u> (22 April 2022) on LHC restart.

ATLAS summaries from major conferences available here:

- LHCP 2022 summary
- Moriond 2022 <u>summary</u> and <u>highlights</u>
- Lepton-Photon 2021 <u>summary</u>
- EPS-HEP 2021 <u>summary</u> and <u>highlights</u>

Higgs 10 symposium at CERN

years

discovery

The ATLAS LHC Run 2 datasets

The LHC pp operations

PU profile for the LHC Run 2

Run 2 dataset

pp 13 TeV 2015-2018 - **139 fb⁻¹** with 94% data taking efficiency and 95% data quality efficiency

(8M Higgs, 300M top quarks, 8B Z's, 30B W's)

Rich Heavy lons datasets

- 2018 and 2015 PbPb at 5.02 TeV 1.82 nb⁻¹
- 2017 XeXe at 5.44 TeV 3 μb^{-1}
- 2016 pPb at 8.16 TeV 165 nb⁻¹

Low PU pp references (but much more) collected in 2017

- 5.02 TeV 0.26 fb⁻¹
- 13 TeV 0.15 fb⁻¹

Well calibrated datasets for a vast, <u>diverse</u> and thrilling physics program!

ATLAS Performance at Run 2

- **Trigger**: Main trigger thresholds have been stable throughout Run 1 and Run 2 despite the higher PU conditions and CM energy
- **Reconstruction and particle identification:** Excellent and Pile Up (PU) resilient reconstruction performance

Electron identification efficiency

Muon identification efficiency

Signature	Run 1	Run 2
Single e (isolated)	25 GeV	27 GeV
Single photon	120 GeV	140 Ge
HT	700 GeV	700 Ge
MET	150 GeV	200 Ge

JES MET Projection fraction resolution for γ -jet events

ATLAS Performance at Run 2

- ML based reconstruction techniques: Improved (e.g. b-tagging with DNN or Tau RNN ID)
- control samples in data!

Tau RNN ID

RNN dedicated to hadronic tau classification in 1-prong and 3-prong separately

> Single pion response $W^{\pm} \rightarrow \tau^{\pm} (\rightarrow \pi^{\pm} \nu_{\tau}) \nu_{\tau}$

Essential for the reconstruction of jets and the jet energy scale calibration

ATLAS-CONF-2021-053

(assuming new particles neither in the decay nor in the loops)

Higgs Physics

Effective loop couplings (assuming $B_i = B_u = 0$)

 $\Gamma_H < 15 \text{ MeV}$ Higgs width @95% CL 1808.01191

Large and excellent Run 2 data sample \Rightarrow opportunities...

Production Measurements in $H \rightarrow \tau^+ \tau^-$

ATLAS-CONF-2021-053

Higgs production cross section measurements with Higgs boson decays to taus...

... Of course a probe of the tau Yukawa coupling!

Measurement made in several channels:

- tt (OLepton) H —
- V(had) H
- VBF —
- Boosted inclusive (ggH) in bins from 60 to 350 GeV

In priority order of the event selection

Higgs Yukawa to taus CP Properties

ATLAS-CONF-2021-053

VBF

VH

Production Mode		SM prediction Result S		Stat. unc.	Syst. unc. [pb]		
		[pb]	[pb]	[pb]	Th. sig.	Th. bkg.	Exp.
ttH		0.031 ± 0.003	0.048 ± 0.045	±0.027	±0.011	±0.027	±0.018
VH		0.118 ± 0.003	0.11 ± 0.04	±0.02	±0.02	±0.01	±0.02
ggF	30%	2.8 ± 0.1	2.7 ± 0.9	±0.4	±0.6	±0.1	±0.5
VBF	20%	0.22 ± 0.01	0.196 ± 0.040	±0.026	±0.024	±0.005	±0.01
$pp \rightarrow H$		3.15 ± 0.09	2.90 ± 0.40	±0.22	±0.26	±0.06	±0.22

Precision reached $\sigma(\mu) \sim 14 \%$

Higgs Yukawa to taus CP Properties

ATLAS-CONF-2021-053

VBF

VH

Higgs Yukawa to taus CP Properties

ATLAS-CONF-2021-053

2015-10-27 04:23:45 CEST

had $E_{\mathrm{T}}^{\mathrm{miss}}$ had

CP properties of the tau Yukawa

through polarisation correlations in $H \rightarrow \tau^+ \tau^- \operatorname{decay}$

CP-odd contributions in Higgs-Gauge interactions occur via higher-order operators.

CP-odd contribution in the Yukawa interaction can be present at the tree level

Higgs Yukawa to taus CP Properties

Hot off the press! Non resonant $HH \rightarrow bbbb$

ATLAS-CONF-2022-035

Hot off the press! Non resonant $HH \rightarrow bbbb$ ATLAS-CONF-2022-035

Higgs pair production through gluon fusion and VBF

Search through non trivial interference

With the VBF production mode not only limits on κ_{λ} also on κ_{2V} Bishara, Contino, Rojo

Critical aspect in this channel is the estimate of the QCD background!

NN used to correct for biases in the data driven method (trained in data control regions - density estimation through NN)!

Data/Pred

Hot off the press! Non resonant $HH \rightarrow b\bar{b}b\bar{b}$

Limit on rate w.r.t. SM 5.4 (8.1) at 95% CL

Strong variation of cross section (and acceptance) yield quite strong constraints at 95% CL:

Observed constraint on trilinear coupling at 95% CL:

 $-3.9 < \kappa_{\lambda} < 11.1$

Uses the latest N3LO-QCD estimate of the VBF-HH cross section! <u>F. Dreyer and A. Karlberg</u>

Observed constraint on HHVV coupling at 95% CL:

 $-0.03 < \kappa_{2\nu} < 2.11$

Almost excludes $\kappa_{2V} = 0$ at 95% CL!

Towards a Measurement of the Higgs Self Coupling

Summary in terms of limits on HH production

exp.	$WW \gamma \gamma$	bb $\gamma\gamma$	bb $ au au$	bbWW	bbbb	bb4l
$\sigma \times Br$	0.1 %	0.26 %	7%	25%	34%	1.5%*
ATLAS	<747 (386)	<4.1 (5.5)	<4.7 (3.9)	-	<5.4 (8.1)	-

*without the Z leptonic branching of 3.3% ~4 events expected at HL-LHC high s/b ~ 5

Full data results in all channels are being finalised and combinations starting!

ATLAS Combination of $bb\tau\tau$ and $bb\gamma\gamma$ current best constraint

Observed constraint on trilinear coupling at 95% CL:

$$-1.0 < \kappa_{\lambda} < 6.6$$

Expected range:

 $-1.2 < \kappa_{\lambda} < 7.2$

Many interesting combinations to appear soon, stay tuned!

As well as major and exciting challenge for Run 3 - and of course at HL-LHC!

Tri-boson WWW Observation!

ATLAS-CONF-2021-053

Boosted *eeµ* candidate event

Triboson $W^{\pm}W^{\mp}W^{\mp}$ **observation**

Search for three W bosons production

Last year shown observation of four top-quark production (see <u>talk</u>)!

First observation of $W^{\pm}W^{\mp}W^{\mp}$ at 8.2 σ (5.4 σ expected)!

Measured cross section:

 $\sigma(pp \rightarrow WWW) = 820 \pm 100 \text{ (stat.)} \pm 80 \text{ (syst.) fb}$

Compatibility 2.6 σ

Top Pair Production at 5.02 TeV

Top pair production cross section measurement at 5.02 TeV

New lepton-jets measurement and combination with earlier di-lepton channel in low PU runs at 5.02 TeV

Excellent precision reached with small dataset of 0.26 fb⁻¹

$\sigma_{t\bar{t}} = 67.5 \pm 0.9 \,(\text{stat.}) \pm 2.3 \,(\text{syst.})$ ± 1.1 (lumi.) ± 0.2 (beam) pb

In excellent agreement with the NNLO-NNLL Top++ prediction

$$68.2 \pm 4.8^{+1.9}_{-2.3} \,\mathrm{pb}$$

Important feedback to improve Higgs precision measurements

Global PDF Fits

ATLAS PDF fit

Using exclusively HERA ep data and ATLAS with the addition of W, Z (+jets), tt, jets, photon differential cross section measurements (fit done at NNLO in QCD, NLO in EW)

Light sea-quark contributions

ATLAS data can be used to predict pD fixed target DY cross sections

Check relative densities of \overline{u} and \overline{d} sea contributions compatible with recent SeaQuest data E906 (at high x) than with NuSea (E866)

Strange quark composition

Improvement w.r.t. previous ATLAS PDFs

V+jets data suppresses R_s at high x (with effect on low x), as well as improved low-x parametrisation

Diphoton Production Cross Section

<u>2107.09330</u>

Measuring diphoton production is not only an electromagnetic process also non trivial strong dynamics!

Estimate of PU events with two $\gamma - jet$ events in same bunch crossing (estimated using photon conversions)

Intricate effects as peak in $p_{T,\gamma\gamma}$ from double emission and kinematic cuts $p_{T,\gamma_1(\gamma_2)} > 40 (30)$

Fi	ixed-or	der acc	curacy	Fragmentation		QCD	NP	
+1 <i>j</i>	+2 <i>j</i>	+3 <i>j</i>	$+ \ge 4j$	$gg \rightarrow \gamma\gamma$	single double		res.	effects
LO	-	-	-	LO	NLO		—	
NLO	LO	-	-	LO			—	—
)	LO PS LO MI		ME	+PS	PS	\checkmark		

Rare single top production

ATLAS-CONF-2022-013

Rare single top process observation

ATLAS-CONF-2022-031

S-channel single top production

Lowest cross-section measurement of all single-top processes!

$$\sigma_{\rm s} = 8.2^{+3.5}_{-2.9}\,{\rm pt}$$

Main systematic:

modelling

Prediction at NLO QCD

$$\sigma_s^{SM} = 10.3 \pm 0$$

Search for exotic FCNC top decays

Search to shed light on the Flavour Hierarchy problem

Search for intermediate mass "flavon" scalar field X in Frogatt-Nielsen models in top decays

Large top production sample can be used to search for exotic top decays!

- Intricate tt-HF production control region in 4-b-tagged jets events

- A BDT trained in each SR for uX and cX signatures separately

Complex signatures searched in 4j, 5j and 6j with 3 b-tagged jets

Limits on product of branching fractions of:

 $\mathcal{B}(t \to Xq) \times \mathcal{B}(X \to b\overline{b}) \lesssim 0.02\,\%$

Independently of the accompanying quark flavour

Search for Dark Matter and a Dark Sector compatible with the Relic Density

Dark sector with a dark Higgs boson s lighter than DM and an additional vector boson Z'

JHEP 1704 (2017) 143

W

Using Track Assisted Reclustering TAR substructure technique

based on R=0.2 calorimeter jets then use tracks to estimate the mass

Search for DM and a Dark Higgs

Resolved

1.5 1.0 Dre-fit / Post-fi

Search for Heavy Long Lived Charged Particles

ATLAS-CONF-2022-034

Searches for R-hadrons, chagrinos or sleptons

Search for high ionisation in the pixel detector using TOT information, and IBL overflow fraction!

Most Probable Value (MPV) of Pixel dE/dx as function of particle $\beta\gamma$

Events triggered using MET either due to neutrinos or gravitons or non reconstructed energy from stable LLP

Excess of 3.6 σ local and (3.3 σ global) is observed - 7 candidates not at high mass not confirmed by TOF measurements (Muons) and Tile calorimeter)

Search for Multicharged Particles

Search for Multi Charged Particles

MCPs are predicted by several BSM models (e.g. 1-2-3-4-5)

High ionisation signals to be measured in the **Pixel**, the **Transition Radiation Tracker** (TRT - from time above threshold and High Threshold hits) and the **Monitored Drift Tubes** (MDT)

Single muon, "late" muon triggers* for slow particles (below β ~0.7) and MET triggers (from ISR jet - muons not in MET)

*Trigger firing on the bunch crossing following on events with one muon >50 GeV in one event and a muon >10 GeV in the next BC.

Main background from muons ionisation fluctuations estimated with data-driven ABCD method

Mass limits ranging from ~ 1 TeV (q = |2e|) and 1.6 TeV (q = |6e|)

Jet R_{AA} in Heavy lon Collisions

ATL-PHYS-PUB-2022-020

Observation of jet suppression at Run 1. Phys. Rev. Lett. 105 (2010) 252303

Closer look at jet suppression with different jet properties

- Different production modes dijets, γ -jets
- b-jets (using semi-leptonic decays of b-jets)
- Grooming to isolate prongs within jets: r_{g}

ATLAS Preliminary 🔶 *R*=0.4, Inclusive jets, Cent. 0-10%, *lyl*<2.8 R=0.4, γ -tagged jets, Cent. 0-10%, |y|<2.8Vs_{NN} = 5.02 TeV Pb+Pb, 0.49-2.2 nb⁻¹ $R=0.4, 0 < r_a < 0.02$ jets, Cent. 0-10%, |y| < 2.1R=0.4, 0.26 < r_a < 0.4 jets, Cent. 0-10%, lyl<2.1 *pp*, 25-260 pb⁻¹ Nuclear mod. factor 0.8 $R_{\rm AA} = \frac{N_{\rm AA}/N_{\rm evt}}{\langle T_{\rm AA} \rangle \times \sigma^{pp}}$ R=0.4, dijets lead , Cent. 0-10%, lyl<2.1 R=0.4, dijets sub-lead , Cent. 0-10%, lyl<2.1 2×10² 3×10² 10^{2} 50 60 70 *p*_{_} [GeV]

The p_T and and r_g dependences corroborate the color coherence model Provide powerful probes of models of Parton interaction in the QGP medium

Tau magnetic moment and $\gamma\gamma \rightarrow \tau\tau$ Observation in PbPb **CERN-EP-2022-079**

Run: 366268 Event: 3305670439 2018-11-18 16:09:33 CEST

Observation of $\gamma\gamma \rightarrow \tau\tau$ in Pb-**Pb collisions and constraint** on tau anomalous magnetic moment

ATLAS Detector LS2 Upgrades

Upgrade in ATLAS News

New LAr Calorimeter digital trigger electronic boards

Improved trigger granularity Boards installed in all FE crates!

Completion of NSW-A on 28 May 2021

Assembly of NSW-A

Completion of NSW-C on 13 September 2021

July 12, 2021, lowering of NSW-A

Muon New Small Wheel

NSW being positioned

Intense preparation, assembly, installation, and now fully focussed on commissioning

Trigger and Data Acquisition Upgrades

Upgrade in ATLAS News

eFEX

Trigger phase-I upgrades and preparation

- New L1Calo: Feature extractors (electrons, jets, global)
- New L1Topo and Central Trigger processor ullet
- New Muon Central Trigger Processor Interface \bullet

Trigger menu preparation

Run 3 Menu is in preparation with increased rates for delayed stream and trigger level analysis!

Will determine the dataset for **physics 10 years to come**!

Installation nearly completed, hardware and firmware commissioning in full swing!

ATLAS Software

News

Bringing new life to ATLAS data

15 October 2021 | By ATLAS Collaboration

Tags: computing

https://atlas.cern/updates/news/reprocessing-Run2-data

Experiment Briefing

Teaching established software new tricks

Tags: computing software

ATLAS Athena framework undergoes important renovation 15 October 2021 | By ATLAS Collaboration

https://atlas.cern/updates/briefing/renovating-athena

New multithreaded and optimised software!

- Large gains in memory usage and improved timing performance
- Run-2 data and MC fully reprocessed (27B data and lacksquare32B MC events)
- New pre-digitised pileup overlay procedure for MC
- Unified and streamlined analysis model ullet
- Improved G4 timing performance full simulation and lacksquareNew fast calorimeter simulation (AF3) with improved accuracy
- Run 3 MC campaign is starting and trigger and reconstruction software is almost ready to be frozen at T0 (offline) and at Point 1 (online)

Summary and Conclusions

ATLAS is continuing to produce thrilling physics results with excellent and diverse LHC Run 2 data

The LHC Run 2 continues to offer vast opportunities for measurements and searches, well beyond initial planning! -

- Performing more and more precise measurements probing the Standard Model in broad range of phase space
- Pursuing the observation of new rare processes
- Continuing to broaden the range of direct searches
- Improvement of reconstruction algorithms to optimally exploit the LHC data!

Run 3 is about to start!

- ATLAS is getting ready for Run 3 at 13.6 TeV and restarting operations.
- Phase-I upgrades, LS2 refurbishments, firmware being commissioned.
- Focus on optimal trigger strategy for the LHC physics of the 10 years to come!

With double the luminosity of Run 2, exciting new results expected at Run 3!

Made possible by the immense efforts in improving predictions as well as modelling and simulation of LHC processes!

Control room at the start of beam commissioning 22 April, 2022

- Handlers

ATLAS Phase-II Upgrades

Phase-II upgrades and preparations of the HL-LHC

Altogether 7 TDRs (See links)

Upgraded Trigger and Data Acquisition

Level-0 Trigger at 1 MHz, Improved High-Level Trigger (150 kHz full-scan tracking)

TDAQ TDR, TDR Amendment

Electronics Upgrades

LAr Calorimeter	LAr <u>TDR</u>
Tile Calorimeter	Tile TDR
Muons	Muons TDF

New Muon Chambers

Inner barrel region with new RPC and sMDT detectors

Muons TDR

High Granularity Timing Detector (HGTD)

Forward region (2.4 < $|\eta|$ < 4.0)

Low-Gain Avalanche Detectors (LGAD) with 30 ps time resolution on tracks HGTD TDR

ATLAS Phase-II Upgrades

SCT global support mounting

Pixel Outer Endcap loading

SR1 at CERN for ITk Integration

ITk bare module prototype

ABCstar SEU test-beam

ITk Strip module

HGTD demonstrator

Altiroc HGTD readout chip prototype

sMDT prototype

TDAQ L0 Global common module

TGC-Electronics

Good progress (pre)production starting!

Thin gap RPC readout strips

LUCID-3 prototypes

TGC-EIL4 Chamber prototype

