Precision measurement of the W boson mass using the full CDF Run II data set

Costas Vellidis

For the CDF Collaboration

39th Conference on Recent Developments in High Energy Physics and Cosmology Thessaloniki 15-18 June 2022

Outline

- Tevatron and CDF
- Motivation
- Analysis strategy
- Simulation
- Detector studies
- Recoil model
- Backgrounds
- Results
- Conclusions

Tevatron

Proton-antiproton collider operating at a collision energy of 1.8 TeV in 1992–96 (Run I) and 1.96 TeV in 2001–11 (Run II)

Highest-energy collider until 2010

- Located at Fermilab near Chicago
- 1 km radius
- 1976: Construction started
- 1985: Commissioning
- 1987: CDF Run 0
- Continuous upgrades over 25 years of operations

CDF

The W boson mass in the Standard Model

The electroweak gauge sector of the SM is described by 3 free parameters (g, g', v), which are constrained by 3 precisely measured observables:

 $\alpha(M_Z) = 1 / 127.918(18)$ $G_F = 1.16637(1) \times 10^{-5} GeV^2$ $M_Z = 91.1876(21)$ GeV

PDG 2020

Fine structure constant from EM measurements

Fermi constant from muon life time

Pole mass of Z boson from LEP energy scan

These parameters constrain other electroweak observables, e.g. $M_W = gv/2$:

$$M_{W} = \frac{M_{Z}}{\sqrt{2}} \sqrt{1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha}{G_{F}M_{Z}^{2}}} (1 + \Delta r)}$$

arXiv:1902.05142
Loop corrections

 \Rightarrow M_W provides a very sensitive probe of internal consistency of the SM

HEP2022 — Thessaloniki — 15/6/2022

Loop corrections to Mw

Global fits confirm the SM expectation down to the MeV level

Status of Mw measurements

A mild $(1-2\sigma)$ tension between global fit and direct measurements

Need more precise measurements of M_W and m_t in order to test efficiently the internal consistency of the SM and look for signs of new physics

Mw sensitivity to physics beyond SM

Similar to the SM case, M_W can be affected through loop corrections arising from particles proposed by various BSM theories

• Theories attempting to provide a deeper explanation of the Higgs sector:

Mw measurement at hadron colliders

Tevatron: $h_1 = p$, $h_2 = \bar{p} \Rightarrow$ quark annihilation dominates (~80%) LHC: $h_1 = p$, $h_2 = p \Rightarrow$ gluon-initiated processes dominate, e.g.:

Partially reconstructable final state but very good resolution of lepton

Can measure:

 $\bar{\mathbf{q}}_4$

$$\begin{cases} \vec{p}_{T}^{\ell} \\ \vec{p}_{T}^{\nu} = -\sum_{\text{final state}} \vec{p}_{T} = \vec{E}_{T} \quad (\text{MET}) \\ m_{T} = \sqrt{2p_{T}^{\ell}p_{T}^{\nu} [1 - \cos(\phi_{\ell} - \phi_{\nu})]} \end{cases}$$

h₁ g q q y k₂ h₁ h₂ h₂ h₂ h₁ h₂ h₂ h₁ h₁ h₂ h₁ h₁ h₁ h₂ h₁ h₁ h₁ h₂ h₂ h₁ h₁ h₁ h₂ h₂ h₁ h₂ h

Fit M_W to p_T^{ℓ} , p_T^{ν} , and m_T spectra

q,

ha

h₁

 n_2

W/Z boson production and decay model

- Built from gaussian-sampled "replicas" of data as inputs to ML algorithms
- Use 25 eigenvector PDF sets derived from 1000 replicas
 - ✓ Compute δM_W from each eigenvector PDF
 - ✓ Estimate the uncertainty of 3.9 MeV on M_W from the rms fit values obtained from the 25 eigenvectors
- → Calculates $d\sigma/(dp_T^W dy_W dM_W dcos\theta_\ell d\phi_\ell)$
- Calculation applies resummation of gluon ISR at NNLL, matched to NLO fixed-order matrix element

NNPDF

 $y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$

Signal simulation and template fitting

- All signals are simulated using a custom Monte Carlo model
 - ★ Generate templates of the fit variable as a finely-spaced function of M_W
 - ★ Perform binned maximum likelihood fits of the templates to the data
- The fast custom Monte Carlo makes smooth, high-statistics templates
 - * And provides analysis control over key components of the simulation

W and Z boson samples

Sample	Candidates
$W \rightarrow electron$	1 811 700
$Z \rightarrow electrons$	66 180
$W \rightarrow muon$	2 424 486
$Z \rightarrow muons$	238 534

- Integrated luminosity (collected between February 2002 September 2011):
 - L = 8.8 fb⁻¹ for both electron and muon channels
 - Identical running conditions for both channels guarantee cross-calibration
- Event selection gives fairly clean samples:
 - Mis-identification backgrounds ~0.5% of the signal

Analysis strategy

Energy scale measurements drive the W mass measurement

- * Tracker calibration
 - ✓ Alignment of the Central Outer Tracker (COT) (2520 cells, 30240 sense wires) using cosmic rays
 - $\checkmark\,$ COT momentum scale and non-linearity constrained using J/ $\psi \to \mu \mu$ and Y $\to \mu \mu$ mass fits
 - ✓ Calibration confirmed using $Z \rightarrow \mu\mu$ mass fit
- * EM calorimeter calibration
 - ✓ COT momentum scale transferred to EM calorimeter using a fit to the peak of the E/p spectrum, around E/p ~ 1
 - ✓ Calorimeter energy scale confirmed using $Z \rightarrow ee$ mass fit
- * Tracker and EM calorimeter resolutions
- * Hadronic recoil modelling
- $\ast\,$ "Blinded" measurements of M_W in e and μ channels

Tracking momentum scale

Set by using J/ ψ - Y - Z $\rightarrow \mu\mu$ resonances

- Fit the J/ ψ mass in bins of 1/p_T(μ) to measure the momentum scale at low p_T(μ) J/ ψ mass independent of p_T(μ) after 2.6% tuning of energy loss
- ➡ Fit the Y mass to measure the momentum scale at higher p_T(µ) and validate beamconstraining procedure (Y is prompt) by comparing the beam-constrained (BC) and non-beam-constrained (NBC) Y mass fits

-5 70

χ²/dof = 33 / 30

★ Sing the momentum scale extracted from J/ ψ / Y → µµ data, perform "blind" measurement of M_Z from Z → µµ data

Measured M_Z consistent with PDG value of 91188 MeV $M_Z = 91192.0 \pm 6.4_{stat} \pm 2.3_{mom. scale} \pm 3.1_{QED} \pm 1.0_{align.}$ MeV

Combined momentum scale: *B* MODELING UNCERTAINTY IN THE $J/\psi \rightarrow \mu\mu$ ANALYSIS $\Delta p/p = (-1389 \pm 25_{syst})$ parts per million $J/\psi \rightarrow \mu\mu$ ANALYSIS

HEP2022 — Thessaloniki — 15/6/2022

EM calorimeter response

✓ Perform "blind" measurement of M_Z from $Z \rightarrow$ ee data using E/p-based calibration

Measured Mz consistent with PDG value of 91188 MeV

$$M_Z = 91194.3 \pm 13.8_{stat} \pm 6.5_{calor.} \pm 2.3_{mom.} \pm 3.1_{QED} \pm 0.8_{align.} MeV$$

Combine E/p calibration with Z \rightarrow ee mass fit for maximum precision

Uncertainty on M_W from final calorimeter calibration 5.8 MeV

 $\Delta S_E = (-14 \pm 72)$ parts per million

Hadronic recoil model

- Calorimeter towers containing lepton energy are removed from the hadronic recoil calculation
- Lost underlying event (UE) energy after lepton tower removal is recovered by rotating φ-windows in W boson data

- Exploit the similarity in the production and decay of W and Z bosons
- The detector response model for the hadronic recoil is tuned using the p_T balance in $Z \rightarrow \ell \ell$ events
- The transverse momentum of hadronic recoil **u** is calculated as 2D vector sum over calorimeter towers

Background fractions & associated Mw uncertainties

	Fraction	δM_W (MeV)					
Source	(%)	m_T fit	p_T^{μ} fit	p_T^{ν} fit			
$Z/\gamma^* \to \mu\mu$	7.37 ± 0.10	1.6(0.7)	3.6(0.3)	0.1 (1.5)			
$W \to \tau \nu$	0.880 ± 0.004	0.1 (0.0)	0.1 (0.0)	0.1 (0.0)			
Hadronic jets	0.01 ± 0.04	0.1 (0.8)	-0.6(0.8)	2.4(0.5)			
Decays in flight	0.20 ± 0.14	1.3(3.1)	1.3(5.0)	-5.2(3.2)			
Cosmic rays	0.01 ± 0.01	0.3(0.0)	0.5~(0.0)	0.3(0.3)			
Total	8.47 ± 0.18	2.1(3.3)	3.9(5.1)	5.7(3.6)			

Muon channel

Electron channel

	Fraction	δM_W (MeV)					
Source	(%)	m_T fit	p_T^e fit	p_T^{ν} fit			
$Z/\gamma^* \to ee$	0.134 ± 0.003	0.2(0.3)	0.3(0.0)	0.0~(0.6)			
$W \to \tau \nu$	0.94 ± 0.01	0.6(0.0)	0.6(0.0)	0.6(0.0)			
Hadronic jets	0.34 ± 0.08	2.2(1.2)	0.9(6.5)	6.2(-1.1)			
Total	1.41 ± 0.08	2.3(1.2)	1.1 (6.5)	6.2(1.3)			

W transverse mass fits

HEP2022 — Thessaloniki — 15/6/2022

HEP2022 — Thessaloniki — 15/6/2022

Costas Vellidis

Summary of W mass fits

Combination	m_T :	fit	p_T^ℓ f	fit	$p_T^{ u}$ f	it	Value (MeV)	$\chi^2/{ m dof}$	Probability
	Electrons	Muons	Electrons	Muons	Electrons	Muons			(%)
$\overline{m_T}$	\checkmark	\checkmark					$80\ 439.0 \pm 9.8$	1.2 / 1	28
p_T^ℓ			\checkmark	\checkmark			$80\ 421.2 \pm 11.9$	0.9 / 1	36
$p_T^{ u}$					\checkmark	\checkmark	$80\ 427.7 \pm 13.8$	0.0 / 1	91
$m_T \ \& \ p_T^\ell$	\checkmark	\checkmark	\checkmark	\checkmark			80435.4 ± 9.5	4.8 / 3	19
$m_T \ \& \ p_T^{ u}$	\checkmark	\checkmark			\checkmark	\checkmark	80437.9 ± 9.7	2.2 / 3	53
$p_T^\ell \ \& \ p_T^{ u}$			\checkmark	\checkmark	\checkmark	\checkmark	$80\ 424.1 \pm 10.1$	1.1 / 3	78
Electrons	\checkmark		\checkmark		\checkmark		$80\ 424.6 \pm 13.2$	3.3 / 2	19
Muons		\checkmark		\checkmark		\checkmark	$80\ 437.9 \pm 11.0$	3.6 / 2	17
All	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$80\ 433.5 \pm 9.4$	7.4 / 5	20

Combinations performed with the Best Linear Unbiased Estimator (BLUE) algorithm [NIMA 270, 110 (1988)], accounting for correlations determined with pseudoexperiments

Distribution	W-boson mass (MeV)	$\chi^2/{ m dof}$
$m_T(e, u)$	$80\ 429.1 \pm 10.3_{\rm stat} \pm 8.5_{\rm syst}$	39/48
$p_T^\ell(e)$	80 411.4 \pm 10.7 _{stat} \pm 11.8 _{syst}	83/62
$p_T^{\nu}(e)$	$80\ 426.3 \pm 14.5_{\rm stat} \pm 11.7_{\rm syst}$	69/62
$m_T(\mu, u)$	80 446.1 \pm 9.2 _{stat} \pm 7.3 _{syst}	50/48
$p_T^\ell(\mu)$	$80\ 428.2 \pm 9.6_{\rm stat} \pm 10.3_{\rm syst}$	82/62
$p_T^{ u}(\mu)$	$80\ 428.9 \pm 13.1_{\rm stat} \pm 10.9_{\rm syst}$	63/62
combination	$80\ 433.5 \pm 6.4_{\rm stat} \pm 6.9_{\rm syst}$	7.4/5

Consistency among all fits in both channels

Combined fit uncertainties

		<u></u>		
Source	Uncertainty (MeV)	Source	Uncertainty (MeV)	
Lepton energy scale and resolution	7 ,	★ Lepton energy scale	3.0	
★ Recoil energy scale and resolution	6	Lepton energy resolution	1.2	
Lepton removal	2	Recoil energy scale	1.2	
Backgrounds	3	Recoil energy resolution	1.8	
$p_T(W) \mod 1$	5	Lepton efficiency	0.4	
 Parton distributions 	10	Lepton removal	1.2	
QED radiation	4 ,	∗ Backgrounds	3.3	
W-boson statistics	12	p_T^Z model	1.8	
Total	19	p_T^W/p_T^Z model	1.3	
Uncertainties in the 2012 CDE	result $(2.2 \text{ fb}-1)$	* Parton distributions	3.9	
	(2.2 ID^{-1})	★ QED radiation	2.7	
[PKL 100, 131003 (2012); PKD 09,	072003 (2014)]	W boson statistics	6.4	
80.5		Total	9.4	
M _w : Previous world average ✓Uncerta Mytites fortom data-driv Allowed M _µ : LEP, Tevatron, LHC ✓ With boild for the ory (N	ven sources scale as expected M/Z pT, PDF, QED)	Uncertainties in CDF result (8	n the 2022 8.8 fb ⁻¹)	

Dominant uncertainties

80.35

are improved by using updated theoretical ^{80.4} inputs

Improvements over the previous (2012) CDF measurement

Method or technique	impact	section of paper
Detailed treatment of parton distribution functions	+3.5 MeV	IV A
Resolved beam-constraining bias in CDF reconstruction	$+10 { m MeV}$	VIC
Improved COT alignment and drift model [65]	uniformity	VI
Improved modeling of calorimeter tower resolution	uniformity	III
Temporal uniformity calibration of CEM towers	uniformity	VII A
Lepton removal procedure corrected for luminosity	uniformity	VIII A
Higher-order calculation of QED radiation in J/ψ and Υ decays	accuracy	VI A & B
Modeling kurtosis of hadronic recoil energy resolution	accuracy	VIII B 2
Improved modeling of hadronic recoil angular resolution	accuracy	VIIIB3
Modeling dijet contribution to recoil resolution	accuracy	VIIIB4
Explicit luminosity matching of pileup	accuracy	VIII B 5
Modeling kurtosis of pileup resolution	accuracy	VIII B 5
Theory model of p_T^W/p_T^Z spectrum ratio	accuracy	IV B
Constraint from p_T^W data spectrum	robustness	VIIIB6
Cross-check of p_T^Z tuning	robustness	IV B

Applying the updates in PDF and track reconstruction, the 2012 result shifts to $M_W^{2012} = 80\,400.5\pm19~MeV$

Updated status of M_W measurements

- Strong tension with SM expectation and global fit (7σ)
- Tension with recent LHC results (2-3σ)
- Still need higher precision from LHC to arrive at a firm conclusion

Summary

- * The W boson mass measurement is a topic of great challenge, and thus of slow progress, but is reaching a really impressive precision at hadron colliders
- * The achieved precision allows for tightly testing the internal consistency of the SM
- * The new CDF measurement is twice as precise as previous measurements, with a total uncertainty of ~1 part in 10,000 [Science, 376:170-176, 04 (2022) & supp. material]:

$$M_W = 80433.5 \pm 6.4_{stat} \pm 6.9_{syst} MeV = 80433.5 \pm 9.4 MeV$$

- * The new result differs from the SM expectation $M_W = 80357 \pm 6$ MeV, with a significance of 7.0 σ
- * The difference suggests the possibility of improvements to the SM calculation or of extensions to the SM

Backup

Tevatron and CDF

The Collider Detector at Fermilab (CDF)

Side view

Front view

Size: 12×16 m Weight: 4,500 tons

The void after the detector removal

CDF Run II data

Delivered 12 fb⁻¹ Acquired 10 fb⁻¹/experiment 15B events total in Run II Total dataset 10 + 9 PB (including Monte Carlo)

* Special track & vertex triggers

* Coverage for "soft" physics

* Variety of collision energies (300, 900, 1960 GeV)

* Unique p-pbar initial state (complementary to LHC)

Physics potential

All about the Standard Model – and beyond: https://cdf.fnal.gov/physintro.html

- Discoveries
 - ✓ New particles
 - ✓ Rare SM processes
- ✓ Subtle behaviour
- Precision measurements
- Searches for new physics
- Hunting down the Higgs
- ➡ 600 PhDs
- **700** papers
- **→** 50,000 citations

The CDF Collaboration

30 September 2011

Currently 400 members from 60 institutions around the World

HEP2022 — Thessaloniki — 15/6/2022

Motivation

SM expectation for M_W:

PDG 2020 $M_W = 80357 \pm 4_{inputs} \pm 4_{theory} \text{ MeV} = 80357 \pm 6 \text{ MeV}$

Global fits test the SM expectation down to the MeV level, e.g. for M_H = 125 GeV:

$$M_{W} = \left(M_{W}^{(0)} + c_{t}\Delta_{t} + c_{t}'\Delta_{t}^{2} + c_{Z}\Delta_{Z} + c_{\alpha}\Delta_{\alpha} + c_{\alpha_{s}}\Delta_{\alpha_{s}}\right) \text{ MeV} \qquad \text{arXiv:1902.05142}$$

$$\Delta_{t} = \left(\frac{m_{t}}{173 \text{ GeV}}\right)^{2} - 1, \quad \Delta_{Z} = \frac{M_{Z}}{91.1876 \text{ GeV}} - 1, \quad \Delta_{\alpha} = \frac{\Delta\alpha_{had}^{(5)}(M_{Z}^{2})}{0.0276} - 1, \quad \Delta_{\alpha_{s}} = \frac{\alpha_{s}(M_{Z}^{2})}{0.119} - 1$$

$$M_{W}^{(0)} = 80359.5, \quad c_{t} = 520.5, \quad c_{t}' = -67.7, \quad c_{Z} = 115000, \quad c_{\alpha} = -503, \quad c_{\alpha_{s}} = -71.6$$

HEP2022 — Thessaloniki — 15/6/2022

Running EM coupling for Mw

The hadronic contribution to $\Pi_{\gamma\gamma}(0)$ cannot be computed perturbatively, but it can be traded for another experimental observable: $R_{had}(q^2) = \sigma_{had}(q^2) / \sigma_{\ell^+\ell^-}(q^2)$

$$\alpha(M_Z^2) = \frac{e^2}{4\pi} \left[1 + \frac{\Pi_{\gamma\gamma}(M_Z^2)}{M_Z^2} \right] = \frac{\alpha}{1 - \Delta\alpha(M_Z^2)} arXiv:1902.05142$$

$$\Delta\alpha(M_Z^2) = \Delta\alpha_\ell(M_Z^2) + \Delta\alpha_{top}(M_Z^2) + \Delta\alpha_{had}^{(5)}(M_Z^2)$$

$$\underbrace{\Delta\alpha_{had}^{(5)}(M_Z^2) = -\frac{M_Z^2}{3\pi} \int_{(2m_\pi)^2}^{\infty} \frac{R_{had}(q^2)dq^2}{q^2(q^2 - M_Z^2)} = 0.02758 \pm 0.00035$$

 $\Delta \alpha_{had}^{(5)}(M_Z^2)$ is one of the biggest sources of uncertainty in electroweak studies

Constraints on new physics from Mw measurements

Generic parameterisation of new physics (except extended EWK sector) contributing to vacuum polarisation corrections on 4-fermion scattering processes: Peskin-Takeuchi "oblique" parameters S, T, U

M_w and asymmetries are the most powerful observables

Analysis strategy

W boson production and decay

Lepton p_T carries most of the M_W information and can be measured precisely (achieved 0.004%)

Hadronic activity from initial state ("hadronic recoil"), of O(10 GeV), is measured in the calorimeter (calibrated to ~0.2%)

Non-W backgrounds are small and partly measured from data

CDF event display

 p_T^{ℓ} , p_T^{ν} , and m_T templates are simulated as functions of M_W using accurate models of:

- Initial state (anti)proton
- W production mechanism
- W decay mechanism

HEP2022 — Thessaloniki — 15/6/2022

Event selection

- Goal: Select events with high p_T central (|η| < 1) leptons and small hadronic recoil activity, to maximise M_W information content and minimise backgrounds
- ➡ Use inclusive lepton triggers: loose lepton track and muon stub / calorimeter cluster requirements, with lepton p_T > 18 GeV
 - Kinematic efficiency of trigger ~100% for offline event selection
- ➡ Offline selection requirements:
 - Electron cluster E_T > 30 GeV, track p_T > 18 GeV
 - Muon track p_T > 30 GeV
 - Loose lepton identification requirements to minimise bias
- ➡ W boson event selection: one selected lepton, |u| < 15 GeV and MET > 30 GeV
- ➡ Z boson event selection: two selected leptons

Analysis strategy

Maximise the number of internal constraints and cross-checks

Driven by three conditions:

1. Robustness: constrain the same parameters in as many different ways as possible

2. Precision: combine independent measurements after showing consistency

3. Bias minimisation: blinded measurements of M_Z and M_W

- All W and Z mass fit results were blinded with a random offset in the range [-50,50] MeV
- The blinding offset was removed after the analysis was declared frozen
- The technique allows to study all aspects of the data while keeping the M_Z and M_W results unknown within $\pm~50~\text{MeV}$

Simulation

Model of the colliding protons

- Built from gaussian-sampled "replicas" of data as inputs to ML algorithms
- Use 25 eigenvector PDF sets derived from 1000 replicas
 - ✓ Compute δM_W from each eigenvector PDF
 - ✓ Estimate the uncertainty of 3.9 MeV on M_W from the rms fit values obtained from the 25 eigenvectors
- Central M_W values from NNPDF3.1 and from other NNLO sets (CT18, MMHT2O14) agree within 2.1 MeV
- Central M_W values from NNPDF3.1 at NLO and from other NLO sets (ABMP16, CJ15, MMHT2O14) agree within 3 MeV
- ♦ M_W uncertainty from missing higher-order QCD effects is estimated to be 0.4 MeV
 - $\checkmark\,$ varying the factorisation and renormalisation scales

NNPDF

✓ comparing the results obtained with two event generators using different models of soft gluon radiation (ResBos and MadGraph aMC@NLO + Pythia)

W/Z boson production and decay model

- The production model must account for the hadronic activity in the initial state
- The perturbative expansion of $d\sigma/dp_T^W$ has terms proportional to $\alpha_s^n \ln^{2n} (p_T^2/M_W^2)$
- The series diverges as $p_T^W \rightarrow 0$
- Need to include corrections to all orders by resumming the series

Two resummation methods

Analytical

- Formal resummation matched to fixed-order matrix element
- Pros:
 - High accuracy
- Cons:
 - Inclusive final states only
 - Numerically expensive
- Used by CDF to fit M_W

Numerical

- Parton showers
- Pros:
 - Exclusive final states
 - Fast
- Cons:
 - Currently only LL with some subleading effects included
- Used by ATLAS to fit $M_{\rm W}$
- The decay model must account for spin correlations among W/Z and the leptons, and for EM radiation from the charged particles

W/Z boson production and decay model

- * The model used by CDF for W/Z boson production and decay is provided by **ResBos** [PRD 56, 5568 (1997) & refs. therein]
- * The model used for multi-photon radiation is generated with Photos [EPJC 45, 97 (2006) & refs. therein] and validated comparing with Horace [JHEP 0710:109 (2007)]

ResBos tuning

ResBos implements the Collins-Soper-Sterman formalism, which performs transverse momentum resummation in the impact parameter (b) space:

LO squared matrix element

$$\frac{d\sigma}{dQ^{2}d^{2}\vec{p}_{T}dydcos\theta d\phi} = \sigma_{0} \int \frac{d^{2}b}{(2\pi)^{2}} e^{i\vec{p}_{T}\cdot\vec{b}} W(b) + Y(Q, \vec{p}_{T}, x_{1}, x_{2}, \mu_{R}, \mu_{F})$$

$$W(b) = e^{-S(b)}C \otimes f(x_{1}, C_{3}/b) C \otimes f(x_{2}, C_{3}/b) \leftarrow Collinear factors$$
Sudakov factor

$$S(b) = \int_{C_{1}^{2}/b}^{C_{2}^{2}Q^{2}} \frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}} \left[ln\left(\frac{C_{2}^{2}Q^{2}}{\bar{\mu}^{2}}\right) A(\bar{\mu}, C_{1}) + B(\bar{\mu}, C_{1}, C_{2}) \right]$$

$$x_{1,2} = \frac{Q}{\sqrt{s}} e^{\pm y}$$
Perturbative coefficients A, B, C

 $C \otimes f$ = convolution of the hard collinear kernel with the PDF

The lower limit C_1^2/b tends to 0 as $b \to \infty$, causing the integral S(b) to diverge, thus:

$$b^* = \frac{b}{\sqrt{1 + b^2/b_{\text{max}}^2}} \Rightarrow S(b) = S_{\text{NP}}(b)S_{\text{P}}(b^*), \ S_{\text{NP}}(b) = -b^2 \left[g_1 + g_2 \ln\left(\frac{Q}{2Q_0}\right) + g_1 g_3 \ln(100x_1x_2) \right]$$

 g_1 (flavour-dependent) and g_3 constrained by the global fit, g_2 tuned to reproduce CDF $p_T(Z)$ data, with $M_W - M_Z$ difference captured in Q dependence (Q₀ = 1.6 GeV) HEP2022 - Thessaloniki - 15/6/2022

ResBos angular coefficients

- A_i (i=0,...,7) determined perturbatively in the fixed-order calculation
- ResBos includes NNLO corrections only to the total rate, not to the A_i
- NNLO corrections affect only p_T(W) > 30 GeV, but CDF has a cut of p_T(W) < 15 GeV</p>
- CDF used the NLO calculation, where the ResBos angular coefficients are exact

Constraining W/Z p_T spectrum ³/_a 20

Fitting ResBos non-perturbative parameter g₂ (used in resummation model) and a_s to p_T(ℓℓ) spectra corrects the p_T(W/Z) model, with an uncertainty of 1.8 MeV[™] on M_W

×10°

Simulation

μ = 8914 MeV

σ = 6688 MeV

 $\lambda = 1.09$

Data

 $\mu = 8912 \pm 14 \text{ MeV}$

σ = 6695 ± 10 MeV

 $\lambda = 1.09 \pm 0.01$

Events / GeV

* Check the $p_T(\mathcal{U})$ model with the \mathcal{U} opening angle $\phi_{\eta}^* = e_{0} t(\Delta \phi_{\eta})$

Custom Monte Carlo detector simulation

A complete detector model, based on first principles of particle tracking, to simulate all quantities measured in the data

- Tracks and photons are propagated through a high-resolution 3D lookup table of material properties for the silicon detector and the COT, made from detailed construction-level knowledge
- At each material interaction:
 - ✓ Calculate ionisation energy loss according to detailed formulas and Landau distribution
 - ✓ Generate bremsstrahlung photons down to 0.4 MeV, using detailed cross section and spectrum calculations
 - ✓ Simulate photon conversion and Compton scattering
 - ✓ Propagate bremsstrahlung photons and conversion electrons
 - ✓ Simulate multiple Coulomb scattering, including non-Gaussian tail
- Deposit and smear hits on COT wires, and perform helix fit applying optional beam constraint

Detector studies

COT alignment using cosmic rays

- Use a clean sample of ~480k cosmic rays for cell-by-cell internal alignment
- Initial (final) relative alignment of cells ~50 (~1) μm

NIMA 762 (2014) pp 85-99

Check of the alignment procedure

50

Track parameter bias vs. azimuth

- Solid circles: before alignment
- Open circles: after alignment

<u>×</u>10⁻³

20

<E/p> (e⁺ - e⁻)

$$\int_{a}^{b} \int_{a}^{b} \int_{a$$

Momentum scale Energy loss

 $(q/p_T)_{\text{meas}} = c_0 + c_1 (q/p_T)_{\text{true}} + c_2 (q/p_T)_{\text{true}}^2 + \dots$

Costas Vellidis

Tracking mom -1.2 Set by using $J/\psi / Y / Z \rightarrow \mu\mu$ resonances → Fit the J/ ψ mass in bins of 1/p_T(μ) to meas $\frac{8}{2}$ J/ ψ mass independent of p_T(μ) after 2.6% -1.4 Fit the Y mass to measure the momentum constraining procedure (Y is prompt), by (-1.6^L and non-heam-constrained (NRC) V mass fits FTC กลังส่งใน ×10³

><u>×10</u>3×10³ ron's calor meter energy. (A) Approx (Rist) 280 a 1 pp 10 pm $J/\psi \rightarrow \mu \mu$ resource peak as a function of the mean much the points, shown in black, has a slope consistent with zero ted from fitse to the $\Upsilon \to \mu\mu$ and $Z \to \mu\mu$ resonance peaks surements yields the momentum correction labelled \mathbf{x}_{10} oson date. Error bars indicate the uncorrelated n measuren 20 (combined correction). (B) Distribution of lation (histogram) including the small background from ate the fitting range used for the electron energy calibration. calibrate $\overline{\mathbf{g}} W$ and Z-boson data (see Fig. $\overline{\mathbf{g}}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}}$, $\overline{\mathbf{g}$, $\overline{\mathbf{g}}$, efers to the Kolmogorov-Smirnov probability of agreement 9.2 9.2 9.6 9.6 m.... (GeV) ons. 9.4 9.4 saloniki — 15/6/2022

lof = 106 / 108

 $3.2 \, m_{\mu\mu} \, (GeV)$

★ Υ→μμ

- **Ζ**→μμ

combined

uncertainty relative to the LHC, where W bosons are produce > of which have less-precisely App w (1379 m fat ump distributions. and restricts the paryon momenta to a range in which their distri "relevant range at the LHC. The /do H€52 /e 70 ctors partially con ≅ inproved lepton resolution at the LHC detectors has a minor j a da a set is much larger, the lower instantaneous luminosity at the helps to 10 prove the resolution on certain kinematic quantities alis data sample corresponds to an integrated luminosity of 8 by the CDF II detector [43] between 2002 and 2011, and super these data [41, 43]. In this cylindrical detector (figure 3 of [43]), the collisions are measured by masses of sy usine drift chamber of intersed in a 1.4 T axial magnetic field. Energy and position m hadronic galorimeters surrounding the COT. The calorimeter e tower pointing back to the average beam collision point at the surro**5**nding the calorimeters identify muon candidates as penetr beam axis (cylindrical z-axis) is denoted as p_T (if measured in $\frac{1}{2}$ The measurement uses high-purity samples of electron and much

51

fit to the points, showing in the xtracted from the too (histograd measurements W-boson datath boson measurements (combine simulation (his indicate the fitting range used the calibrated K _{KS}" refers to th degaysweeMupp sandie deposition, and muor Electron candidates r

Cross-check and combination with $\textbf{Z} \rightarrow \mu \mu$

Using the final measurement of M_Z from $\mu\mu$ data data data data measurement of M_Z from $\mu\mu$ data

Final calibration using all J/ ψ / Y / Z $\rightarrow \mu\mu$ fits yields an uncertainty of 2 MeV on M_W

HEP2022 — Thessaloniki — 15/6/2022

Costas Vellic...

EM calorimeter response

- Energy loss distributions calculated using detailed GEANT4 calorimeter simulation tuned on CDF data [NIMA 729 (2013) pp 25-35], including:
 - Leakage into the hadronic calorimeter
 - Absorption in the coil
 - ► Dependence on the incident angle and E_T
- → Energy-dependent gain (non-linearity) parametrised as $1 + \beta \ln(E_T/39 \text{ GeV})$ with $\beta = (7.2 \pm 0.4_{\text{stat}}) \times 10^{-3}$ from fits to W → ev and Z → ee E/p data in E_T bins
- Energy resolution parametrised as a fixed sampling term plus a tuneable constant
 - Constant terms are fit to the widths of the E/p and $Z \rightarrow ee$ peaks

✓ Energy scale (S_E) uncertainty on M_W: 6 MeV
 ✓ Non-linearity (β) uncertainty on M_W: 2 MeV
 ✓ Performed uniformity check in bins of η

$\textbf{Z} \rightarrow \textbf{ee}$ mass cross-check and combination

✓ Perform "blind" measurement of M_Z from $Z \rightarrow$ ee data using E/p-based calibration

Measured M_Z consistent with PDG value of 91188 MeV

 $M_Z = 91194.3 \pm 13.8_{stat} \pm 6.5_{calor.} \pm 2.3_{mom.} \pm 3.1_{QED} \pm 0.8_{align.} MeV$

 \checkmark Combine E/p calibration with Z \rightarrow ee mass fit for maximum precision

Uncertainty on M_W from final calorimeter calibration 5.8 MeV

Lepton resolutions

- Tracking resolution parametrised in custom simulation by:
 - * Radius-dependent COT hit resolution $\sigma_{\rm h} = (150 \pm 1_{\rm stat}) \,\mu{\rm m}$
 - * Beam spot size $\sigma_{\rm b} = (36.0 \pm 0.5_{\rm stat}) \ \mu {\rm m}$
 - * Tuned on the widths of the Z $\rightarrow \mu\mu$ (beam-constrained) and Y $\rightarrow \mu\mu$ (both BC and NBC) mass peaks
 - ★ Uncertainty on M_W from muon p_T resolution: 0.3 MeV
- Electron cluster resolution parametrised in custom simulation by:
 - ★ 12.6% / √E_T (sampling term)
 - * Constant term κ = (0.73 ± 0.02_{stat})%
 - * Tuned on the widths of the E/p and $Z \rightarrow$ ee peaks (selecting radiative electrons)
 - ★ Uncertainty on M_W from electron E_T resolution: 0.9 MeV

Recoil model

Building the model

The hadronic recoil momentum vector **u** has:

- A soft, randomly oriented "spectator interaction" component
 - ✓ Modelled using minimum-bias data with tuneable magnitude
- ► A hard "jet" component, directed opposite to the boson p_T
 - ✓ Use p_T-dependent response and resolution parameterisations
 - ✓ The hadronic response R_{rec} = u_{reconstr.} / u_{true} is parametrised as a logarithmically increasing function of boson p_T motivated by Z boson data

Tuning the model with Z events

 χ^2 / dof = 16.6 / 14

KS = 85.3 %

20

x22 /doof= 10.8.214

200

let resolution

_____30) ρ_⊤(Ζ→μμ) (GeV)

ย∪ 3**9**0 pp(ZZ>ผ¢¢)(¢CeoV))

Resolution of p $_{
m T}$ balance normal to boson p $_{
m T}$

ь

ь

- Project the vector sum of $p_T(\ell)$ and u on an axis η parallel to $p_T(\ell)$ and an axis ξ normal to $p_T(\ell)$
- Mean and rms values of projections as functions of $p_T(\ell\ell)$ provide information on hadronic model parameters
- Model parameters are tuned by minimising χ^2 between data and simulation

+ u_n) (GeV)

(Rp^z

⊐≝<u> </u>66

00 55

44

Resolutio

-UE resolution

10

poson p₁

ance parallel to

_______ β__(Z→μμ) (GeV)

20

 χ^2 / dof = 16.6 / 14

KS = 85.3 %

200

100

M_w uncertainty from mean = 2 MeV

 γ^2 / dof = 14 / 14

 χ^2 / dof = 7.3 / 14

10

0.5

R p_{η}^{Z} + u_{η} (GeV)

α (Rp^z + μ₀) (GeV)

-0.5∟ 0

07.5

5

-04.5^L

100

M_w uncertainty from rms = 1.8 MeV

Testing the model with W events

 u_{\parallel}

 \vec{u}_T

 \vec{p}_T^l

 $\boldsymbol{u}_{\parallel}$

Test the recoil components parallel (u_{\parallel}) and normal (u_{\perp}) to the lepton momentum

Additional constraint on the recoil model with W events

- ► Use $d\sigma/(dp_T^V dy_V dM_V)$ (V = W, Z) at NNLL + NNLO from **DYqT** [NPB 815, 174 (2009)] to model the scale variation of the ratio
- Use p_T(W) data to reduce the scale uncertainty of the model, taking into account correlation with the hadronic recoil model

Backgrounds

Sources of background in the W sample

- $W \rightarrow \mu v$ backgrounds:
- $\checkmark~Z/\gamma^* \rightarrow \mu\mu$ with one muon escaping detection, estimated from custom simulation
- $\checkmark~W\to\tau\nu\to\mu\nu\nu\nu$, estimated from custom simulation
- ✓ Multijet events where one jet mimics a muon, estimated using a NN discriminant for the misidentified and signal muons in the data
- ✓ Muons from decays-in-flight of low momentum long-lived mesons in the COT, resulting in reconstructed high p_T tracks, are estimated by fitting track χ^2 /dof data templates of Z → µµ (signal) and W → µv with large d₀ (background) to W → µv candidates (taking into account contamination from true W → µv events)
- Cosmic rays, removed with efficiency > 99% using a dedicated tracking algorithm, are estimated from a previous data sample scaled by the run-time to integrated luminosity ratio
- $W \rightarrow ev$ backgrounds:
- ✓ Z/γ^* → ee with one muon escaping detection, estimated from custom simulation
- $\checkmark~W \rightarrow \tau v \rightarrow e v v v,$ estimated from custom simulation
- ✓ Multijet events where one jet mimics an electron, estimated by fitting signal and background templates of track isolation, NN discriminant, and MET to W → ev data

Results

All fit uncertainties (MeV)

Source of systematic		m_T fit			p_T^ℓ fit			p_T^{ν} fit	
uncertainty	Electrons	Muons	Common	Electrons	Muons	Common	Electrons	Muons	Common
* Lepton energy scale	5.8	2.1	1.8	5.8	2.1	1.8	5.8	2.1	1.8
Lepton energy resolution	0.9	0.3	-0.3	0.9	0.3	-0.3	0.9	0.3	-0.3
Recoil energy scale	1.8	1.8	1.8	3.5	3.5	3.5	0.7	0.7	0.7
Recoil energy resolution	1.8	1.8	1.8	3.6	3.6	3.6	5.2	5.2	5.2
Lepton $u_{ }$ efficiency	0.5	0.5	0	1.3	1.0	0	2.6	2.1	0
Lepton removal	1.0	1.7	0	0	0	0	2.0	3.4	0
* Backgrounds	2.6	3.9	0	6.6	6.4	0	6.4	6.8	0
$p_T^Z \text{ model}$	0.7	0.7	0.7	2.3	2.3	2.3	0.9	0.9	0.9
p_T^W/p_T^Z model	0.8	0.8	0.8	2.3	2.3	2.3	0.9	0.9	0.9
\star Parton distributions	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
\star QED radiation	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Statistical	10.3	9.2	0	10.7	9.6	0	14.5	13.1	0
Total	13.5	11.8	5.8	16.0	14.1	7.9	18.8	17.1	7.4

* Dominant uncertainties

Cross checks

- Mass differences from subsamples with equal statistics
- In the electron channel, results are shown with calorimeter calibration using the E/p fit from the corresponding subsample (in parentheses) and from the full sample

Fit difference	Muon channel	Electron channel
$M_W(\ell^+) - M_W(\ell^-)$	$-7.8\pm18.5_{\rm stat}\pm12.7_{\rm COT}$	$14.7 \pm 21.3_{\text{stat}} \pm 7.7_{\text{stat}}^{\text{E/p}} \ (0.4 \pm 21.3_{\text{stat}})$
$M_W(\phi_\ell > 0) - M_W(\phi_\ell < 0)$	$24.4 \pm 18.5_{\mathrm{stat}}$	$9.9 \pm 21.3_{\text{stat}} \pm 7.5_{\text{stat}}^{\text{E/p}} (-0.8 \pm 21.3_{\text{stat}})$
$M_Z(\text{run} > 271100) - M_Z(\text{run} < 271100)$	$5.2 \pm 12.2_{\mathrm{stat}}$	$63.2 \pm 29.9_{\text{stat}} \pm 8.2_{\text{stat}}^{\text{E/p}} (-16.0 \pm 29.9_{\text{stat}})$