

LISA Data Processing

Antoine Petiteau (CEA/IRFU/DPhP)

LISA Greece

Remote - 23 February 2022

- Overview of LISA Data
- Data analysis and processing concepts
- Ground segment organisation and development
- On going activities

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Gravitational wave sources emitting between 0.02mHz and 1 Hz

GW sources in the mHz band

- Binaries: large range of masses and mass ratios:
 - SuperMassive BH Binaries
 - Extreme Mass Ratio Inspiral
 - Stellar mass BH Binaries
 - Double White Dwarfs
 - Double Neutron Stars
 - Intermediate Mass Ratio Inspiral
 - Intermediate Mass BH Binaries
- Stochastic backgrounds:
 - First order phase transitions, cosmic string networks, ...
- ► Bursts: cosmic strings, ...
- Unknown?

Galactic binaries

- Binaries with White Dwarfs and Neutrons Stars
- ► In the Galaxy: 30 millions.
- ► GW waveform: quasi-monochromatic
- Duration: permanent
- Signal to noise ratio:
 - detected sources: 7 1000
 - confusion noise from non-detected sources
- ► Event rate:

. . .

- 25 000 detected sources (over 30 millions sources)
- 17 guarantied sources (verification binaries) now more are expected (GAIA,

Super Massive Black Hole Binaries

- ► Mass > 10⁵ M_{Sun}
- ► GW waveform:
 - Inspiral: Post-Newtonian
 - Merger: Numerical relativity,
 - Ringdown: Oscillation of the resulting MBH.
- Inspiral at frequency < 10 mHz</p>
- Merger and ringdown around mHz
- ► 10 100 events per year

© EHT (2019)

EMRIs

GW waveform:

- Very complex waveform
- Multiple harmonics
- No long & precise simulation at the moment
- Duration: about 1 year
- Signal to Noise Ratio:
 from tens to few hundreds

Event rate: from few events per year to few hundreds

GW sources

GW sources

Gravitational wave sources emitting between 0.02mHz and 1 Hz

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD** Diagnostics Auxiliary channels

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

- Data provided to the Ground Segment:
 - Daily a time segment of 24h corrected for transmission error
 - + Near real-time raw data stream during communication periods
 (about 8h per day)
- Content of reformatted telemetered data, L0.5:
 - GW sources: all sources together (overlapping)
 - Dominant noises: laser (8 orders of magnitude higher than GWs), clock noise, Tilt-To-Length, ...
 - Secondary noises
 - Instrument artefacts: gaps, glitches, spectral lines, non-stationarities,...

- Data provided to the Ground Segment:
 - Daily a time segment of 24h corrected for transmission error
 - + Near real-time raw data stream during communication periods
 (about 8h per day)
- Content of reformatted telemetered data, L0.5:
 - GW sources: all sources together (overlapping)
 - Dominant noises: laser (8 orders of magnitude higher than GWs), clock noise, Tilt-To-Length, ...
 To be reduced
 - Secondary noises
 - Instrument artefacts: gaps, glitches, spectral lines, non-stationarities,...

To be separated

and extracted

Data provided to the Ground Segment:

Daily a time segment of 24h corrected for transmission error

+ Near real-time raw data stream during communication periods
 (about 8h per day)

- Content of reformatted telemetered data, L0.5:
 - GW sources: all sources together (overlapping)

Dominant noises: laser (8 orders of magnitude higher than GWs), clock noise, Tilt-To-Length, ...
 To be reduced

- Secondary noises
- Instrument artefacts: gaps, glitches, spectral lines, non-stationarities,...

Data provided to the Ground Segment:

Daily a time segment of 24h corrected for transmission error

+ Near real-time raw data stream during communication periods
(about 8h per day)

- Content of reformatted telemetered data, L0.5:
 - GW sources: all sources together (overlapping)

To be separated and extracted

- Dominant noises: laser (8 orders of magnitude higher than GWs), clock noise, Tilt-To-Length, ...
 To be reduced
- Secondary noises
- Instrument artefacts: gaps, glitches, spectral lines, non-stationarities,...

Challenge for data analysis

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

L0

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

L1 3 TDI channels with 2 "~independents"

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

L1 3 TDI channels with 2 "~independents"

L3

Data Analysis of GWs

Catalogs of GWs sources with their waveform

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 89% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 89% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 89% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 89% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 89% duty cycle
- Dominated by laser noise

12

 After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 89% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 89% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 89% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

LISA data analysis logic

- Analysis of all signals and noises together => global analysis
- Flexibility: first data of this kind => novel analysis challenge
 - Multiple approaches, multiple pipelines
 - Quick development from prototyping to production (devOps)
- Multiple steps approach with iterations between steps because data products are very interconnected:
 - 1. Reduce dominant noises (Time Delay Interferometry) and partial correction on instrument artefacts => L1 data (TDI data)
 - 2. GW sources extraction + better understanding of noises and instrument with multiple pipelines
 => L2 data
 - 3. Cross-check, combination, merging of L2 data to produce catalogs + associated scientific products
 => L3 data
- ► All levels requires continuous scientific interactions: collaboration all over the mission
- Science exploitation, mainly on L3 data: Consortium is expecting to do science as well as the world wide community

L0 to L1

Greece - Remote - 23rd February 2022

L0 to L1

Data levels:

- L0.5: L0 reformatted: engineering/physical values
- L1: All requested data for GW extraction

Greece - Remote - 23rd February 2022

L0 to L1

- L0.5: L0 reformatted: engineering/physical values
- L1: All requested data for GW extraction
- Core part of L0 to L1: Initial Noise Reduction Pipeline (INReP):
 - TDI+: Suppress laser noise, clock noises, spacecraft jitter noise
 - Data synchronisation
 - Reduce Tilt-To-Length noise

TDI for reducing laser noise

- Combine measurements to reduce laser noise by 8 order of magnitude
- Several complex combinations
- Can be seen as virtual interferometer
- TDI generation 1.5 takes into account the unequal arms

 $X_1 = \eta_{1'} + \mathcal{D}_{2'}\eta_3 + \mathcal{D}_{2'2}\eta_1 + \mathcal{D}_{2'23}\eta_{2'} - \eta_1 - \mathcal{D}_3\eta_{2'} - \mathcal{D}_{33'}\eta_{1'} - \mathcal{D}_{33'2'}\eta_3$

- TDI generation 2 takes into account first order time evolution of arm length

$$\begin{split} X_2 &= \eta_{1'} + \mathcal{D}_{2'}\eta_3 + \mathcal{D}_{2'2}\eta_1 - \mathcal{D}_{2'23}\eta_{2'} + \mathcal{D}_{2'233'}\eta_1 \\ &+ \mathcal{D}_{2'233'3}\eta_{2'} + \mathcal{D}_{2'233'33'}\eta_{1'} + \mathcal{D}_{2'233'33'2'}\eta_3 \\ &- \eta_1 - \mathcal{D}_3\eta_{2'} - \mathcal{D}_{33'}\eta_{1'} - \mathcal{D}_{33'2'}\eta_3 - \mathcal{D}_{33'2'2}\eta_1 \\ &- \mathcal{D}_{33'2'22'}\eta_3 - \mathcal{D}_{33'2'22'2}\eta_1 - \mathcal{D}_{33'2'22'23}\eta_{2'} \,. \end{split}$$

- Global fits >>
- Multiple pipelines with multiple approaches
- Different steps in each pipeline
- Flexibility
- Two main aspects
 - Alerts (as quick as possible => less than 1 hour):
 - Low Latency Alerts
 - Deep Alert Analysis
 - Full analysis (long term) for extracting the best knowledge of observed GW sources + the best understanding of instrument
L1 to L2: alerts

- Two types of near-real time analysis for alerts:
 - Detect new events
 - Improve of parameters estimation for already detected events (ex: sky)
- Near-real time when communication: current plan 8h/24h but scientific benefits in increasing this duration
- ► Two steps:
 - Low Latency Alerts Pipeline: automatic near-real time analysis to release an alert as fast as possible
 - Deep Analysis Alerts Pipeline: when an alert has been detected, analysis to:
 - Confirm the nature of the events
 - Refine the parameters

L1 to L2: alerts

- Low Latency Alerts Pipeline: automatic near-real time analysis to release an alert as fast as possible
- Deep Analysis Alerts Pipeline: when an alert has been detected, analysis to:
 - Confirm the nature of the events
 - Refine the parameters

CONSORTIUM

L1 to L2: Deep Analysis

L1 to L2: Deep Analysis

- Complex problem: Multiple approaches and Flexibility
- Large computing ressources required:
 - Estimation per year extrapolated from the first LISA Data Challenge (2021 CPU -hours) BUT possible factor 10 to 100:

Per year of data	CPU-hours	Scratch volume	Informative volume
#1 With SBBH	30M	500TB	160GB
#1 without SBBH	17M	225TB	160GB
#2 with SBBH	(14.5-52.5)M	500TB	160GB
#2 without	(7.5-15)M	225TB	160GB
Low-latency	550K	52TB	6GB

=> Distributed Data Processing Center sharing computation load (production and development) on multiple computing centres in Europe and USA.

Multiple analysis

- Multiple independent analysis/pipelines is already part of the SGS plan:
 - Mechanism of multiple analysis part of the construction of the SGS organisation
 - Independent intellectually, not by flags

Simulation

- Given the complexity of the data and the sensitivity of LISA to any perturbations, simulations are at the core of the development for data analysis and instrument:
 - Validation performance model and instrument design
 - Generation of realistic data
- Global simulation (GW+instrument): LISA Data Challenge infrastructure
 Simulation Suite workflow
- Simulation of the instrument:
 - LISANode (official)
 - LISA SimScape
 - LISASim

Development of the SGS

- Commissioning: 2 phases:
 - Primary commissioning (PC): sub-systems, instrument, prime
 - Science commissioning (SC): initial part science operations, tapering as milestones are reached
- "Routine" operations: main pipelines operated routinely with in parallel prototyping and updates

LISA data

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

L1 3 TDI channels with 2 "~independents"

L3

L0

Data Analysis of GWs

Catalogs of GWs sources with their waveform

LISA data

Organisation of the SGS

Organisation of the SGS

Context:

- ESA:
 - In charge of operational decisions
 - Build the hardware and responsible for the performance
 - Manage archive
 - Interact with public (alerts, data releases)

• Consortium:

- Has the expertise in science
- Develop data analysis pipelines
- Provide the core hardware
- NASA/US: delivering to ESA but also in the Consortium?

Organisation of the SGS

- Share of responsibilities between ESA and Consortium:
 - ESA:
 - Operates L0 to L1: Noise reduction subsystem monitoring, global instrument characterisation
 - Run Low Latency Alerts Pipelines (LLAP)
 - Diffusion of data (releases and alerts)
 - Consortium:
 - Develops and operates L1 to L2
 - Develops and operates L2 to L3
 - Delivers to ESA products L2, L3 and feedback for the L0 to L1
 - Shared developments Consortium/ESA/NASA for L0 to L1 pipelines and LLAP (ex: Consortium prototypes and delivers first version; ESA finalises implementation and operates)

Collaborative approach

Main vision in the Consortium:

LISA data are complex with large number of sources of different kinds and instrumental artefacts simultaneously present in the data

+ First data of this kind

=> To best analyse the data and maximise the scientific return, it is necessary to collaborate within the Consortium while maintaining multiple approaches

- DDPC: French lead + many contributors
- Work Breakdown Structure & Development Plan: Work in progress (to be ready for adoption):
 - Product tree, functional tree, ...

On going activities for B1

- Detailed definition of the Ground Segment in particular the DDPC
- Mapping of responsibilities on the DDPC
- Demonstrating the feasibility of LISA Science regarding data analysis: prototyping and dedicated studies:
 - Initial Noise Reduction Pipeline (L0.5 to L1)
 - LISA Data Challenge (L1 to L2/L3)

Detailed definition

Example of possible architecture:

Mapping of responsibilities

- For adoption, we have to identify who is responsible or contribute to which DDPC products and sub-products
 => Science Implementation Plan and Multi-Lateral Agreements
- Main support: the current product tree
- Multiple iterations, starting for the first one with
 - At each country level :
 - To identify the wishes of each institute of the country
 - to gather all the wishes
 - At Ground segment level:
 - To gather all the wishes of all countries
 - To present the overlaps and holes

	Unmodelled Sources	Generic Research Methods
	Unmodelled Sources 1	External Preparatory Data
	Unmodelled Sources 2	Gaia data
	Stochastic Background	Other mission data
	Stochastic Background 1	Data Quality Monitoring
	Stochastic Background 2	Tools
	Instrumental Noise Cleaning	Science validation in operations
DDPC PBS	Instrumental Noise Cleaning 1	Science validation in development
	Instrumental Noise Cleaning 2	
Science Softwares	L2->L3 SW	System Softwares
L0->L1 SW	Catalogue facilities	DDPC Development Facilities and Deployment
INREP 1	Simulation	Software Development kit
INREP 2	Simulateur Instrumental	CI/CD
?	Simulation GW Sources	DCCs Installation and configuration
1 1->I 2 Alerts SW	Simulation L0.5 data	All the DCCs are identical. They can run any defined pro DCC. For example, there will be only one DCC with the
Low Latency Alert Pipeline 1	Simulation L1 data	Prototyping Framework Lisacollab
Low Latency Alert Pipeline 2	Simulation L2 data	Expertise Lab Framework
	Instrumental effects (Fast Approximate and High fidelity)	Platform allowing the scientist to prototype new algorithms
	Instrumental effect / Dvnamic	Expertise Logs: Managing & Searching facility
	Instrumental effect / Phasemeter	This component is dedicated to register "science" logs.
Global Fit 1 pipeline	Instrumental effect / Thermal Noise	Data Management
Global Fit 2 pipeline		This product includes the data model, database schema, a
Global Fit 3 pipeline		Data Model Definition
L1->L2 Mono-Blocks		Science Data Model
МВНВ		Engineering Interfaces
MBHB 1		Metadata (science/technical)
MBHB 2	Comparison Method 2	Data Storage
EMRIs	Comparison Method 3	Data Access library
EMRIs 1	Wave Form generator (Fast Approximate and High fidelity)	Data Access tools
EMRIs 2	WFG - MBHB	Data exchange facility
SOBBH	WFG - MBHB - FA	The data exchange facility enables internal (between the
SOBBH 1	WFG - MBHB - HF	DDPC Operations Facilities
SOBBH 2	WFG - Galaxy	Tools for Operations
Galactic Binaries	WFG - Galaxy -FA	It gathers all the tools needed for operators during the
Galactic Binaries 1	WFG - Galaxy - HF	System Supervisor (monitoring)
Galactic Binaries 2	WFG - EMRIs	Pipeline Management
Unmodelled Sources	WFG - EMRIs - FA	Pipelines builder
Unmodelled Sources 1	WFG - EMRIs - HF	This component ease the integration/chaining of the diffe
Unmodelled Sources 2	WFG - SOBBH	MBHB, EMRIs, etc…
Stochastic Background	WFG - SOBBH - FA	Workflow Manager/DCC
Stochastic Background 1	WFG - SOBBH - HF	manager monitor their resources. It is also in charge of p
Stochastic Background 2	WFG - Stochastic Background	DDPC System Orchestrator
Instrumental Noise Cleaning	Time series Management tool	The orchestration tool dispatches the work to perform or
Instrumental Noise Cleaning 1	Plotting	DDPC security facility
	Transform Frequenncy domain	Implement the authentication, privacy, authorization and a
L2->L3 SW	Time frequency representation	
Catalogue facilities	Power Spectral Density	DCC Main
Simulation		DOC Main
Simulateur Instrumental	Al model	
Simulation GW Sources	Generic Research Methods	DCC 2
Simulation L0.5 data	External Preparatory Data	DCC 3
Simulation L1 data	Gaia data	DCC 4
Simulation L2 data	Other mission data	DCC N
Instrumental effects (Fast Approximate and High fidelity)	Data Quality Manitoring	Notes
Instrumental effect / Dynamic		
Instrumental effect / Phasemeter		
Instrumental effect / Thermal Noise	Science validation in operations	Processing - A. Petiteau - LISA Greece - R
	Science validation in development	

	Workflow Manager/
P	The workflow man manager monitor
	CODDPC System Orch
	The orchestration
	DDPC security fac
	Implement the auth
	Infrastructure
	DCC Main
	DCC 1
	DCC 2
	DCC 3
	DCC 4
	DCC N
	Notes

ESA I NA

LISA Greece - Remote - 23rd February 2022

- Two big purposes:
 - Provide a productive playground for research
 - Validate the LISA science ground segment
- LISA Data Challenge process:

- Two big purposes:
 - Provide a productive playground for research
 - Validate the LISA science ground segment
- LISA Data Challenge process:

Design specific challenges

- Two big purposes:
 - Provide a productive playground for research
 - Validate the LISA science ground segment
- LISA Data Challenge process:

Design specific challenges

Produce datasets (training and blind)

Community

- Two big purposes:
 - Provide a productive playground for research
 - Validate the LISA science ground segment
- LISA Data Challenge process:

- Provide a productive playground for research
- Validate the LISA science ground segment

Collect results and compare them

Community

LISA Data Challenge process:

Design specific challenges Produce datasets (training and blind) Publish datasets and documentations

- Two big purposes:
 - Provide a productive playground for research
 - Validate the LISA science ground segment

Collect results and compare them

LISA Data Challenge process:

Design specific challenges Produce datasets (training and blind)

Publish datasets and documentations

Community

On going challenges:

SMBHBs + Galactic binaries

One SMBHB + gaps + glitches

Conclusion

LISA raw data: small volume but complex :

- Large number of overlapping GW sources to extract
- Multiples noises to reduce
- Challenge for data analysis:
 - First data of this kind => flexibility + multiple approaches
 - Ongoing research and prototyping (LDC)
 - Large computing ressources needed
- Organisation: collaborative approach
 - ESA: communication, instrument monitoring, noise reduction, alerts, public releases
 - Consortium: extraction of GWs, support to alerts and instrument monitoring
- Consortium contribution: Distributed Data Processing Center: collaborative approach with multiple contributors for software and for infrastructure (Data Computing Center) => open for more contribution

Thank you!

Super Massive Black Hole Binaries ► LISA: SMBHB from 10⁴ à 10⁷ solar masses in "all" Universe

EMRIs

- Capture of a "small" object by massive black hole M_{Sun}): Extreme Mass Ratio Inspiral
 - Mass ratio > 1000
 - GW gives information on the geometry the black hole.
 - Test General Relativity in field
 - Frequency : 0.1 mHz to 0.1 Hz
 - Large number of source could observed by LISA

ound

EMRIs

- Capture of a "small" object by massive black hole M_{Sun}): Extreme Mass Ratio Inspiral
 - Mass ratio > 1000
 - GW gives information on the geometry the black hole.
 - Test General Relativity in field
 - Frequency : 0.1 mHz to 0.1 Hz
 - Large number of source could observed by LISA

ound

Challenge 1: Radler - one source type per dataset

Challenge 1: Radler - one source type per dataset

Challenge 1: Radler - one source type per dataset

Challenge 1: Radler - one source type per dataset

Challenge 1: Radler - one source type per dataset

Full galaxy (WD binaries)

Challenge 1: Radler - one source type per dataset

Challenge 1: Radler - one source type per dataset

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Measurements via exchange of beams:
 - Heterodyne interferometry with carrier for interspacecraft measurement => GWs
 - Sideband for transferring amplified clock jitter => correction of additional clock jitter
 - Pseudo-Random Noise
 => ranging (measure arm length)
 - Laser locking

See talk from Olaf Hartwig

LISA Data Processing - A. Petiteau - LISA Greece - Remote - 23rd February 2022