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Inflationary Cosmology [Starobinsky, Mukhanov, Chibisov, Guth, Linde, Hawking, · · · ]

Successful Primordial Inflation should:

Explain flatness, isotropy;

Provide origin of �T
T ;

O↵er testable predictions for ns, r (gravity waves), dns/d lnk;

Recover Hot Big Bang Cosmology;

Explain the observed baryon asymmetry;

O↵er plausible CDM candidate;
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Slow-roll InflationSlow-roll inflation

Inflation is driven by some potential V (�):

Slow-roll parameters:

✏ =
m2

p

2

⇣
V 0

V

⌘2
, ⌘ = m2

p

⇣
V 00

V

⌘
.

The spectral index ns and the tensor to scalar ratio r are
given by

ns � 1 ⌘
d ln�2

R
d ln k , r ⌘

�2
h

�2
R
,

where �2
h and �2

R are the spectra of primordial gravity waves
and curvature perturbation respectively.

Assuming slow-roll approximation (i.e. (✏, |⌘|) ⌧ 1), the
spectral index ns and the tensor to scalar ratio r are given by

ns ' 1� 6✏+ 2⌘, r ' 16✏.
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Constraint on Inflation Planck (2018), BK (2015)
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SUSY Higgs (Hybrid) InflationSUSY Higgs (Hybrid) Inflation

[Dvali, Shafi, Schaefer; Copeland, Liddle, Lyth, Stewart, Wands ’94]

[Lazarides, Schaefer, Shafi ’97][Senoguz, Shafi ’04; Linde, Riotto ’97]

[Buchmüller, Domcke and Schmitz]

Attractive scenario in which inflation can be associated with
symmetry breaking G �! H

Simplest inflation model is based on

W = S (���M2)

S = gauge singlet superfield, (� ,�) belong to suitable
representation of G

Need � ,� pair in order to preserve SUSY while breaking
G �! H at scale M � TeV, SUSY breaking scale.

R-symmetry

�� ! ��, S ! ei↵ S, W ! ei↵W

) W is a unique renormalizable superpotential
39 / 56
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SUSY Higgs (Hybrid) Inflation

Tree Level Potential

VF = 2 (M2
� |�2

|)2 + 22|S|2|�|2
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SUSY Higgs (Hybrid) Inflation

Take into account radiative corrections (because during inflation
V 6= 0 and SUSY is broken by FS = �M2)

Mass splitting in �� �

m2
± = 2 S2

± 2M2, m2
F = 2 S2

One-loop radiative corrections

�V1loop = 1
64⇡2Str[M4(S)(ln M2(S)

Q2 �
3
2)]

In the inflationary valley (� = 0)

V ' 2M4
⇣
1 + 2N

8⇡2 F (x)
⌘

where x = |S|/M and

F (x) = 1
4

✓�
x4 + 1

�
ln

(x4�1)
x4 + 2x2 ln x2+1

x2�1 + 2 ln 2M2x2

Q2 � 3

◆

41 / 56

24 / 42Be



SUSY Higgs (Hybrid) Inflation

Tree level + radiative corrections + minimal Kähler potential yield:

ns = 1�
1

N
⇡ 0.98.

�T/T proportional to M2/M2
p , where M denotes the gauge

symmetry breaking scale. Thus we expect M ⇠ MGUT for this
simple model. In practice, M ⇡ (1� 5)⇥ 1015 GeV

Since observations suggest that ns lie close to 0.97, there are at
least two ways to realize this slightly lower value:

include soft SUSY breaking terms, especially a linear term in
S;

employ non-minimal Kähler potential.

42 / 56
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SUSY Higgs (Hybrid) InflationResults

[Pallis, Shafi, 2013; Rehman, Shafi, Wickman, 2010]
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SUSY Higgs (Hybrid) Inflation

K � s(S†S)2

[M. Bastero-Gil, S. F. King and Q. Shafi, 2006]
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Susy Hybrid Inflation

Some examples of gauge groups G such that

G
h�i6=0
����! H ◆ SM ⌘ SU(3)c ⇥ SU(2)L ⇥ U(1)Y

where

G = SM ⇥ U(1)B�L, ( cosmic strings)

G = SU(5), (� = � = 24), (monopoles)

G = SU(5)⇥ U(1), (� = 10), (Flipped SU(5))

G = SU(4)c ⇥ SU(2)L ⇥ SU(2)R, (� = (4, 1, 2)), (monopoles)

G = SO(10), (� = 16) (monopoles)



(Non-minimal) Sugra Hybrid Inflation

[M. Bastero-Gil, S. F. King, Q. Shafi 2006; M. Rehman, V. N. Senoguz, Q. Shafi 2006]

The superpotential is given by

W = S
⇥
���M2

⇤

The Kähler potential can be expanded as

K = |S|2 + |�|2 +
���

��2
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Now including all other corrections potential takes the following form

V ' 
2
M

4
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Results

Non-Minimal Kähler potential

Without soft-SUSY breaking 
term

With soft-SUSY breaking term
& minimal Kähler potential
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Non-Minimal Kähler potential
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�4
Inflation with non-minimal coupling to gravity

[Okada, Rehman, Shafi, 2010]
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�4
Inflation with non-minimal coupling to gravity

[Okada, Rehman, Shafi, 2010]
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Inflation with a CW Higgs Potential

M
Φ

V !Φ"

Above vev !AV"

inflation
Below vev !BV"

inflation

Note: This is for minimal coupling to gravity
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Inflation with a CW Higgs Potential
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Inflation with a CW Higgs Potential
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Evolution of Intermediate-mass Monopoles

Monopole yield
after reheating : YM '

⇠
�3

10 exp(�3NM )
⇣

⌧

tr

⌘2

2⇡2

45 g⇤T 3
r

Number density
at production, ⇠ =

min
⇣
H

�1
,m

�1
eff

⌘ Dilution during
Inflation

Dilution from In-
flaton oscillation

Entropy
density after
reheating

MACRO bound: YM . 10�27.
Ambrosio et al. [MACRO Collaboration], EPJC 25, 511 (2002)

Adopted threshold for observability: YM & 10�35.
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Intermediate Mass Monopoles and MACRO

V
1/4
0

1016GeV
�+/mPl ��/mPl

H+ H�
N+ N� log10

⇣
MI+
GeV

⌘
log10

⇣
MI�
GeV

⌘
(1013 GeV)

1.51 14.41 13.07 3.40 3.91 9.8 16.2 13.30 13.40
1.59 16.04 14.67 3.54 4.10 9.9 16.2 13.30 13.41
1.66 17.91 16.51 3.67 4.28 9.9 16.2 13.31 13.41
1.74 20.05 18.62 3.78 4.45 9.9 16.2 13.31 13.41
1.82 22.51 21.04 3.88 4.59 9.9 16.2 13.31 13.41

Table: Values of the various parameters (indicated by a subscript +) corresponding to
the MACRO bound (YM < 10�27) on the flux of monopoles formed at the scale MI

and their values (indicated by a subscript �) corresponding to the adopted
observability threshold (YM > 10�35) for the monopole flux.

Chakrabortty, Lazarides, RM, Shafi JHEP 02 (2021) 114

June 13, 2022 2 / 2-IEfEgat-ÉoBofTEEBgo



�4
Inflation with non-minimal coupling to gravity

Consider the following action in the Jordan frame:

SJ =
R
d
4
x
p
�g

h⇣
m

2
P+⇠�2

2

⌘
R� 1

2 (@�)
2 � �

4 �
4
i
.

In the Einstein frame the potential turns out to be:

VE(�) =
1
4��

4

✓
1+ ⇠ �2

m2
P

◆2 = V0
 

4

(1+ 2)2
,
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⇣
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4
P

4 ⇠2

⌘
and  ⌘

p
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mP
.

The kinetic energy of the scalar field is made canonical with respect

to a new field � as
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�4
Inflation with non-minimal coupling to gravity
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�4
Inflation with non-minimal coupling to gravity

[Okada, Rehman, Shafi, 2010]

CMB observables in the large ⇠ limit:

ns ' 1� 2
N0

⇠ 0.967, r ' 12
N

2
0
⇠ 0.003, for N0 = 60

with

As ' �
⇠2

N2
0

72⇡2 ) ⇠ '
⇣

N0p
72⇡As

⌘p
� ⇠ 104 for � ⇠ 1 [SM Higgs Inflation?]
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�4
Inflation with non-minimal coupling to gravity

[Okada, Rehman, Shafi, 2010]
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SO(10)⇥ U(1)PQ [Holman, Lazarides, QS, 82]

SO(10)⇥ U(1)PQ
210
�!
MGUT

SU(3)c ⇥ SU(2)L ⇥ SU(2)R ⇥ U(1)B�L ⇥ U(1)PQ
126,45
�!
MI

SU(3)c ⇥ SU(2)L ⇥U(1)Y ⇥Z2
10
�! SU(3)c ⇥U(1)em ⇥Z2

 (i)
16 (i = 1, 2, 3) !

U(1)PQ

ei✓ (i)
16

Residual discrete PQ symmetry is Z12 ) domain wall problem
( U(1)PQ broken after inflation)

Introduce two SO(10) fermion 10-plets

 (↵)
10 ! e�2i✓ (↵)

10 (↵ = 1, 2)

Residual discrete symmetry is now Z4, which coincides with
the center Z4 of SO(10) (Spin(10)) (for the full theory)
(Cosmic Strings and Dark Matter)

26 / 60
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�210 ! �210, �126 ! e2i✓�126, �45 ! e4i✓�45, �10 !
e�2i✓�10. These transformation properties ensure that the
action of the residual PQ symmetry on these fields is identical
to that of the center of SO(10).

Yukawa couplings:  16 16�10, 16 16�126, 10 10�45

Higgs couplings include
�210�126†�126†�45,�210�126†�10�45,�210�126�10

These couplings guarantee that U(1)PQ is the only global
symmetry present.

27 / 60#



First breaking produces GUT monopoles that are inflated
away.

Second breaking makes intermediate scale cosmic strings
which can appear after inflation ) astrophysical test of
GUTs.

Dark Matter:
In addition to axions there could exist WIMP-like DM in this
class of models because of the fermion 10-plets.

28 / 60=



Cosmic Strings from SO(10)

Cosmic Strings arise during symmetry breaking of G ! H if
⇡1(G/H) is non-trivial. Consider

SO(10)
MGUT
�! SU(4)⇥ SU(2)L ⇥ SU(2)R

MI
�! SM ⇥ Z2 Mass

per unit length of string is µ ⇠ M2
I , with MI ⌧ MP . The strength

of string gravity is determined by the dimensionless parameter
Gµ ⌧ 1. For this talk Gµ ⇠ 10�12 or so, such that strings,

analogous to monopoles, can survive inflation.

Cosmic 
Horizon

Closed 
Loop

Open
Strings

20 / 60to
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First breaking produces GUT monopoles that are inflated
away.

Second breaking makes intermediate scale cosmic strings
which can appear after inflation ) astrophysical test of
GUTs.

Dark Matter:
In addition to axions there could exist WIMP-like DM in this
class of models because of the fermion 10-plets.

28 / 60Go
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Gravitational Waves from Quasi-stable Strings

The gravitational wave spectra from loops decaying before and after
tM (the horizon reentrance time of the monopoles) during radiation
dominance, from loops decaying after the equidensity time teq, and
from the decayingMSM̄ structures.
.
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Gravitational Waves from Quasi-stable Strings

The total gravitational wave spectra from quasi-stable cosmic strings
with varying Gµ values as indicated and for different horizon
reentrance times of the monopole-antimonopole pairs.
.
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Gravitational Waves from Quasi-stable Strings

The total gravitational wave spectra from quasi-stable cosmic strings
with varying Gµ values as indicated and for different horizon
reentrance times of the monopole-antimonopole pairs.
.
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Summary

Unification of all forces remains a compelling idea.

Grand unification explains charge quantization, predicts
monopoles and proton decay.

Also explains tiny neutrino masses via seesaw mechanism.

Intermediate scale monopoles and cosmic strings may survive
inflation.

In non-SUSY inflation with Higgs potential, r & 0.01 (minimal
coupling to gravity).

SUSY and Non-SUSY models o↵er plausible dark matter
candidates such as TeV mass higgsino, axions....

SUSY o↵ers compelling inflation models

Search for primordial gravity waves, monopoles, cosmic
strings, dark matter and proton decay.
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Stochastic Gravity Waves from Strings

Unresolved GWs bursts from string loops at different cosmic era
produces the stochastic background.

Loops that are formed and decay during radiation produce a plateau in
the spectrum in the high frequency regime.

Loops that are produced during radiation dominance but decay during
matter dominance generate a sharply peaked spectrum at lower
frequencies.

Loops that are produced and decay during matter domination also
generate a sharply peaked spectrum which, however, is overshadowed by
the previous case.

October 26, 2021 2 / 4Ishihara



Stochastic Gravity Wave Background: Analytic
Approximation

String loops form and decay

during radiation dominance

Loops form during radiation and

decay during matter dominance

Loops form and decay

during matter dominance

Resultant stochastic gravity waves
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Sousa, Avelino, Guedes, arXiv:2002.01079
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Gravitational Waves from Quasi-stable Strings
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Inflation, GWs and PPTA bound
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Partially inflated strings re-enter horizon at a time tF in post-inflationary
universe and can decay via GWs emission.

Modified GWs spectra from ‘diluted’ strings can satisfy the PPTA bound.
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GWs without Inflation and Observational Prospects
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Strongest constraint has come from PPTA: Gµ . 10�11.

Provisional GWs signal in NANOGrav: Gµ ⇠ 10�10.
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