Inflationary Scenarios

FORMULATING E- & T-MODEL INFLATION IN SUPERGRAVITY

C. PALLIS

FACULTY OF ENGINEERING ARISTOTLE UNIVERSITY OF THESSALONIKI

BASED ON:

- C.P., J. Cosmol. Astropart. Phys. 05, 043 (2021) [arXiv:2103.05534].
- C.P., Eur. Phys. J. C 82, no. 5, 444 (2022) [arXiv: 2204.01047].

OUTLINE

E- & T-MODEL INFLATION

FROM MINIMAL TO POLE CHAOTIC INFLATION NON-SUSY E- & T-MODEL INFLATION

SUGRA FRAMEWORK

GAUGE SINGLET VS NON-SINGLET INFLATON Kähler Potentials VS Kähler Manifolds

INFLATIONARY SCENARIOS

INFLATIONARY POTENTIALS INFLATIONARY OBSERVABLES - RESULTS

CONCLUSIONS

HEP 2022: Recent Developments in High Energy Physics and Cosmology 15-18 June 2022, Thessaloniki, Greece Workshop: Cosmic Inflation: From Observations to Particle Models

E- & T-Model Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
	00 0	000 00	

FROM MINIMAL TO POLE CHAOTIC INFLATION

OBSERVATIONAL STATUS OF CHAOTIC INFLATION (CI)

• MOTIVATION: THE POWER-LAW POTENTIALS, EMPLOYED IN MODES OF CI, OF THE FORM

$$V_{\rm I} = \lambda^2 \phi^n$$
 or $V_{\rm I} = \lambda^2 (\phi^2 - M^2)^{n/2}$ For $M \ll m_{\rm P} = 1.$ (:1)

ARE VERY COMMON IN PHYSICS AND SO IT IS EASY THE **IDENTIFICATION** OF THE **INFLATON** ϕ WITH A FIELD ALREADY PRESENT IN THE THEORY; E.G., WITHIN HIGGS INFLATION (HI) THE INFLATON COULD PLAY, AT THE END OF INFLATION, THE ROLE OF A HIGGS FIELD.

• However, For n = 2, 4 The Theoretically Derived Values For Spectral Index n_s and/or Tensor-to-Scalar Ratio r Are Not Consistent With the Observational Ones.

• The Combined Bicep2/Keck Array and Planck Results Require, for Fitted $A_{\rm S}$ and N_{\star} - see Below -,

 $n_{\rm s}=0.965\pm0.009~$ and $~r\lesssim0.032~$ at 95% c.l.

• On the Contrary, **Observationally Friendly** Are Models of CI Collectively Named α -Attractors.

• These can be Classified into E-Model Inflation (EMI) (or α -Starobinsky model) and T-Model Inflation (TMI) And Are Based on a Specific Relation Established Between the Initial, ϕ , and the Canonically Normalized Inflaton $\widehat{\phi}$. I.e.

$$V_{\alpha} = \begin{cases} V_{\rm E} \left(1 - \exp\left(- \sqrt{2/N} \widehat{\phi} \right) \right) & \text{for EMI,} \\ V_{\rm T} \left(\tanh\left(\widehat{\phi} / \sqrt{2N} \right) \right) & \text{for TMI,} \end{cases}$$

where N > 0 and $V_{\mathrm{E,T}} = V_{\mathrm{I}}(\phi) - \mathrm{See}$ Eq. (I).

• Such Relations Between ϕ and $\widehat{\phi}$ Can be Achieved in the The Presence Of A Pole In The Inflaton Kinetic Term.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

E- & T-MODEL INFLATION	SUGRA Framework	INFLATIONARY SCENARIOS	Conclusions
	00	000 00	
E M B C I			
FROM MINIMAL TO POLE CHAOTIC INFLATION			

INTRODUCING A KINETIC POLE IN THE INFLATON SECTOR

• To Analyze Systematically the non-Minimal Kinetic Mixing in the inflaton Sector We Consider the Lagrangian Of The Homogenous Inflaton Field $\phi = \phi(t)$

$$\mathcal{L} = \sqrt{-g} igg(rac{N_p}{2f_p^2} \dot{\phi}^2 - V_{\mathrm{I}}(\phi) igg) \ \, \mbox{with} \ \, f_p = 1 - \phi^p, \ p = 1,2 \ \, \mbox{and} \ \, N_p > 0.$$

Where we set $m_{
m P}=1$ and g is the Determinant Of The Background Metric $g^{\mu
u}$.

• IF WE INTRODUCE THE CANONICALLY NORMALIZED FIELD, $\widehat{\phi}$, Defined As Follows:

$$\frac{d\widehat{\phi}}{d\phi} = J = \frac{\sqrt{N_p}}{f_p} \quad \Rightarrow \quad \phi = \begin{cases} 1 - e^{-\widehat{\phi}/\sqrt{N_1}} & \text{for } p = 1, \\ \tanh\left(\frac{\widehat{\phi}}{\sqrt{N_2}}\right) & \text{for } p = 2, \end{cases}$$

 ${\mathcal L}$ in terms of $\widehat{\phi}$ Takes the Form

$$\mathcal{L} = \sqrt{-\mathfrak{g}} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \widehat{\phi} \partial_{\nu} \widehat{\phi} - V_{\mathrm{I}} \left(\widehat{\phi} \right) \right) \quad \text{With} \quad V_{\mathrm{I}} (\widehat{\phi}) = V_{\mathrm{E/T}} \left(\widehat{\phi} (\phi) \right) \cdot$$

• We can Show that for a Suitable Choice of f_p Including A Pole¹ the Potential $V_{I}(\widehat{\phi})$ Develops A Plateau, and so it Becomes Suitable to Drive Observationally Acceptable CI.

• The Analysis of E- and/or T-Model Inflation (ETM) Can Be Performed Exclusively in terms of V_1 and $\hat{\phi}$ Using The Standard Slow-Roll Approximation.

3

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

¹ B.J. Broy et al. (2015); T. Terada (2016); T. Kobayashi et al. (2017).

E- & T-Model Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
○○	00	000 00	
FROM MINIMAL TO POLE CHAOTIC INFLATION			

INFLATIONARY OBSERVABLES AND REQUIREMENTS

• The Number of e-foldings, N_{\star} , that the Scale $k_{\star} = 0.05/Mpc$ Underwent During CI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \frac{V_{\mathrm{I}}}{V_{\mathrm{L}\widehat{\phi}}} = \int_{\phi_{\mathrm{f}}}^{\phi_{\star}} d\phi J^2 \frac{V_{\mathrm{I}}}{V_{\mathrm{L}\phi}} \simeq 44 - 56 \text{ Depending on } w_{\mathrm{rh}} \simeq (-0.24 - 0.58), \text{ Where } V_{\mathrm{I}} = V_{\mathrm{L}} = 0.24 - 0.58$$

- The **Barotropic Index** $w_{\rm rh}$ Depends on the Degree of the Polynomial in $V_{\rm I}$;
- ϕ_{\star} [$\hat{\phi}_{\star}$] is The Value of ϕ [$\hat{\phi}$] When k_{\star} Crosses Outside The Inflationary Horizon;
- $\phi_{f}[\widehat{\phi}_{f}]$ is the Value of $\phi'[\widehat{\phi}]$ at the end of HI Which Can Be Found From The Condition:

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), [\widehat{\eta}(\phi_{\mathrm{f}})]\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{V_{\mathrm{L}\phi}}{V_{\mathrm{I}}}\right)^2 = \frac{1}{2J^2} \left(\frac{V_{\mathrm{L}\phi}}{V_{\mathrm{I}}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{V_{\mathrm{L}\phi\phi}}{V} = \frac{1}{J^2} \left(\frac{V_{\mathrm{L}\phi}}{V_{\mathrm{I}}} - \frac{V_{\mathrm{L}\phi}}{V_{\mathrm{I}}}\frac{J_{,\phi}}{J}\right)^2$$

The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Consistent with Planck Data:

$$A_{\rm s}^{1/2} = \frac{1}{2\sqrt{3}\pi} \frac{V_{\rm I}(\widehat{\phi}_{\star})^{3/2}}{|V_{\rm I}_{\phi}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{V_{\rm I}(\phi_{\star})^{3/2}}{|V_{\rm L}_{\phi}(\phi_{\star})|} = 4.588 \cdot 10^{-5}$$

• THE REMAINING OBSERVABLES ARE FOUND AS:

$$n_{\rm s} = \ 1 - 6 \widehat{\epsilon_\star} \ + \ 2 \widehat{\eta}_\star, \quad \alpha_{\rm s} = \ 2 \left(4 \widehat{\eta}_\star^2 - (n_{\rm s} - 1)^2 \right) / 3 - 2 \widehat{\xi}_\star \quad \text{and} \quad r = 16 \widehat{\epsilon_\star},$$

 $\text{Where } \widehat{\xi} = V_{\mathrm{I},\widehat{\phi}} V_{\mathrm{I},\widehat{\phi\phi\phi}} / V_{\mathrm{I}}^2 = V_{\mathrm{I},\phi} \, \widehat{\eta}_{,\phi} / V_{\mathrm{I}} \, J^2 + 2 \widehat{\eta \epsilon} \, \text{And The Variables With Subscript} \, \star \, \text{Are Evaluated at } \phi = \phi_{\star} \, . \\$

• We have To Check The Hierarchy Between The Ultraviolet Cut-off $\Lambda_{UV} \sim m_P$, of the Effective Theory And The Inflationary Scale. In Particular, The Validity Of The Effective Theory Implies:

(a)
$$V_{\rm I}(\phi_*)^{1/4} \leq \Lambda_{\rm UV}$$
 for (b) $\phi \leq \Lambda_{\rm UV}$

E- & T-Model Inflation	SUGRA Framework	Inflationary Scenarios	Conclusions
○○○	OO	000	
●○	O	00	
NON-SUSY E. & T-MODEL INFLATION			

E-MODEL INFLATION (POLE OF ORDER ONE)

• The Simplest Choice It would be The Pole in in the Kinetic Part of $\mathcal L$ to be of Order One. I.e.,:

$$f_1 = 1 - \phi \text{ and } V_{\mathrm{I}} = V_{\mathrm{E}} = \lambda^2 \phi^n / n \text{ With } N_1 > 0 \,.$$

• CANONICALLY NORMALIZING ϕ , WE OBTAIN

$$\widehat{\phi} = -\sqrt{N_1}\ln\left(1-\phi\right) \ \text{or} \ \phi = 1-e^{-\sqrt{N_1}\widehat{\phi}}$$

• $V_{\rm I}$ in Terms of $\widehat{\phi}$ Experiences A Stretching For $\widehat{\phi} > 1$ Which Results To A Plateau, i.e., $V_{\rm I} = \lambda^2 (1 - e^{-\sqrt{N_1/2\widehat{\phi}}})^n/n - \text{E.g.}$, For n = 2 we Obtain the Well-Known Starobinsky Model and the Plots Below.

Here, $\epsilon \simeq nf_1^2/2N_1\phi^2$ and $\eta \simeq nf_1(nf_1-1)/N_1\phi^2$. Therefore, $N_\star \simeq N_1\phi_\star^2/nf_{1\star} \Rightarrow \phi_\star = \sqrt{nN_\star}/(nN_\star + N_1) \sim 1 \gg \phi_{\rm f}$. • The Constraint on $A_{\rm s}$ Yields $A_{\rm s}^{1/2} \simeq \lambda N_\star/2\sqrt{3nN}\pi = 4.588 \cdot 10^{-5} \Rightarrow \lambda \simeq 2\sqrt{3nNA_{\rm s}}\pi/N_\star \Rightarrow \lambda \sim 10^{-6}$ for $N_\star \simeq 55$. • The Other Observables Are $n_{\rm s} \simeq 1 - 2/N_\star \simeq 0.965$, $\alpha_{\rm s} \simeq -2/N_\star^2 = 9.5 \cdot 10^{-4}$ and $r \simeq 8N_1/N_\star^2 \le 0.07$ $\Rightarrow N_1 \le 19$.

E- & T-Model Inflation ○○○ ○●	SUGRA Framework OO O	Inflationary Scenarios 000 00	Conclusions

T-MODEL INFLATION (POLE OF ORDER TWO)

• If We Introduce a Pole of Order Two in the Kinetic Part of \mathcal{L}^2 We Obtain:

$$f_2 = 1 - \phi^2 \text{ and } V_{\rm T} = \lambda^2 \left(\phi^2 - M^2\right)^2 / 16 \ \, {\rm With} \ \, M \ll 1 \ \, \& \ \, N_2 > 0 \, .$$

• Canonically Normalizing ϕ , we Obtain $\phi \sim anh \widehat{\phi}$ and hence the Name T-Model (TMI) HI

$$\widehat{\phi} = \sqrt{N_2} \ln \left((1+\phi)/(1-\phi) \right) \quad \text{or} \quad \phi = \tanh \left(\widehat{\phi} / \sqrt{N_2} \right)$$

• $V_{\rm I}$ in Terms of $\widehat{\phi}$ Experiences A Stretching For $\widehat{\phi} > 1$ Which Results To A Plateau, i.e., $V_{\rm I} = \lambda^2 \tanh^4(\widehat{\phi}/\sqrt{2N_2})/16$.

Here, $\epsilon \simeq 16f_2^2/N_2\phi^2$ and $\eta \simeq 8f_2(3-5\phi^2)/N_2\phi^2$. Therefore, $N_\star \simeq N_2\phi_\star^2/4f_{2\star} \Rightarrow \phi_\star = \sqrt{4N_\star}/\sqrt{4N_\star+N_2} \sim 1 \gg \phi_{\Gamma}$. • The Constraint on A_s Yields $A_s^{1/2} \simeq \sqrt{2\lambda}N_\star/\sqrt{3N_2\pi} = 4.588 \cdot 10^{-5} \Rightarrow \lambda \simeq 4\sqrt{6N_2A_s}\pi/N_\star \Rightarrow \lambda \simeq 10^{-5}$ for $N_\star \simeq 55$. • <u>The Other Observables Are</u> $n_s \simeq 1-2/N_\star \simeq 0.965$, $\alpha_s \simeq -2/N_\star^2 = 9.5 \cdot 10^{-4}$ and $r \simeq 2N_2/N_\star^2 \le 0.032 \Rightarrow N_2 \le 55$. 2R . Kallosh and A. Linde (2013); J. Ellis, D.V. Nanopoulos and K.A. Olive (2013).

E- & T-Model Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	• o •	000 00	

GAUGE SINGLET VS NON-SINGLET INFLATON

SUGRA SCALAR POTENTIAL

- How WE CAN FORMULATE POLE-INFLATION WITHIN SUGRA?
- The General Lagrangian For The Scalar Fields z^{lpha} Plus Gravity In Four Dimensional, $\mathcal{N}=1$ SUGRA is:

$$\mathcal{L} = \sqrt{-\mathfrak{g}} \left(-\frac{1}{2} \mathcal{R} + K_{\alpha \overline{\beta}} g^{\mu \nu} D_{\mu} z^{\alpha} D_{\nu} z^{* \overline{\beta}} - V \right) \quad \text{Where} \quad V = V_{\text{F}} + V_{\text{D}} \quad \text{With} \quad \begin{cases} V_{\text{D}} = g^2 \mathcal{D}_a^2 / 2 \\ V_{\text{F}} = e^K \left(K^{\alpha \overline{\beta}} \mathcal{F}_{\alpha} \mathcal{F}_{\beta}^* - 3 |W|^2 \right) \end{cases}$$

 $\text{Also } K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{z\bar{\beta}}} > 0 \quad \text{and} \quad K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}; \quad D_{\mu} z^{\alpha} = \partial_{\mu} z^{\alpha} + ig A^a_{\mu} T^a_{\alpha\beta} z^{\beta}, \quad \mathbf{F}_{\alpha} = W_{,z^{\alpha}} + K_{,z^{\alpha}} W \quad \text{and} \quad \mathbf{D}_a = z_{\alpha} \left(T_a\right)^{\alpha}_{\beta} K_{,z^{\beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} = \frac{\partial^2 K_{,z^{\alpha}}}{$

 A_a^{μ} is The Vector Gauge Fields, g is the Gauge Coupling and T_a are the Generators of the Gauge Transformations OF z^a . • The Kinetic Mixing is Controlled by The Kähler Potential K Which Affects Also V. This Consists a Complication With Respect the non-SUSY case And We Show Below How We Arrange it in two Ways. V Depends on Superpotential W Too. • We Concentrate on CI Driven by V_F – As we show Below We Can Easily Assure $V_D = 0$ During CI.

INTRODUCTION OF THE STABILIZER FIELD

• EMI CAN BE SYSTEMATICALLY FORMULATED IN SUGRA IF WE INTRODUCE A GAUGE SINGLET SUPERFIELD $z^1 = S$ called Stabilizer or Goldstino. Its Introduction is Necessary For the Following Reasons:

• It Generates the non-SUSY Potential From the term $|W_S|^2$ for S = 0. E.g., For $W = \lambda S \Phi^{n/2}$ We Obtain

$$\langle V_{\rm F} \rangle_{\rm I} = \langle e^K K^{SS^*} | W_{,S} |^2 \rangle_{\rm I} \in V_{\rm non-SUSY} = \lambda^2 \phi^n \quad \text{with} \quad \phi = {\sf Re}(\Phi) \quad \text{the (initial) inflaton.}$$

- It Assures the Boundedness of V_F : If We set S = 0 During Inflation, the Terms $K_{z^{\alpha}}W$, $\alpha \neq 1$, and $-3|W|^2$ Vanish. The 2nd one May Render V_F Unbounded From Below.
- It can be **Stabilized** at S = 0 Without Invoking Higher Order Terms, if we Select ³:

 $K_2 = N_S \ln\left(1 + |S|^2/N_S\right) \implies K_2^{SS^*} = 1 \text{ With } 0 < N_S < 6 \text{ Which Parameterizes the Compact Manifold } SU(2)/U(1).$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

³C.P. and N. Toumbas (2016).

E- & T-Model Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000 00	○● ○	000	

GAUGE SINGLET VS NON-SINGLET INFLATON

E-MODEL INFLATION (EMI)

• We Select another Gauge Singlet Superfield $z^1 = \Phi$ (the Inflaton) and the Most General *W* Consistent With the *R* Symmetry Under Which R(S) = R(W), $W = S(\lambda_1 \Phi + \lambda_2 \Phi^2 - M^2)$.

• WE OBTAIN A POLE OF ORDER 1 IN THE KINETIC TERMS, IF WE ADOPT

$$K_{\rm Is} = -N\ln\left(1-(\Phi+\Phi^*)/2\right) \quad \text{or} \quad \widetilde{K}_{\rm Is} = -N\ln\frac{(1-\Phi/2-\Phi^*/2)}{(1-\Phi)^{1/2}(1-\Phi^*)^{1/2}}, \quad \text{with} \quad {\rm Re}(\Phi) < 1 \quad \text{and} \quad N > 0.$$

• Keeping in Mind that the Pole has to be Eliminated from $V_{\rm I}$ for $K = K_{\rm 1s}$, We analyze the Following Models:

- δ E-Model (δ EM) With $K = K_{21s} = K_2 + K_{1s}$ with $N = 2, M \ll 1$ and $\lambda_2 \simeq \lambda_1(1 + \delta_{21})$ with $\delta_{21} = O(10^{-5})$;
- E-Model 2 & 4 (EM2 & EM4) With $K = \widetilde{K}_{21s} = K_2 + \widetilde{K}_{1s}$ with Free N, λ_1, λ_2 and $M \ll 1$ Since $\langle e^K \rangle_I = 1$.

T-MODEL INFLATION (TMI)

- We Use 2 Extra (Gauge non-Singlet) Superfields $z^2 = \Phi$, $z^3 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{B-L}$.
- Superpotential $W = S \left(\lambda_2 \bar{\Phi} \Phi / 2 M^2 / 4 + \lambda_4 (\bar{\Phi} \Phi)^2 \right)$
- W Is Uniquely Determined Using $U(1)_{B-L}$ and an R Symmetry and Leads to a Grand Unified Theory (GUT) Phase Transition

At The SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| \sim M/\sqrt{2}$ • We Obtain A Pole Of order 2 in the Kinetic Terms, If we Adopt

$$K_{(11)^2} = -\frac{N}{2}\ln\left(1-2|\Phi|^2\right)\left(1-2|\bar{\Phi}|^2\right) \quad \text{or} \quad \widetilde{K}_{(11)^2} = -\frac{N}{2}\ln\frac{\left(1-2|\Phi|^2\right)\left(1-2|\Phi|^2\right)}{\left(1-2\bar{\Phi}^*\Phi^*\right)^{1/2}},$$

• Keeping in Mind that the Pole has to be Eliminated from V_I for $K = K_{(11)2}$, We Analyze The Following Models:

- δ T-Model (δ TM) With $K = K_{2(11)^2} = K_2 + K_{(11)^2}$ with N = 2 and $\lambda_4 = \lambda_2(1 + \delta_{42})$ in W with $\delta_{42} = O(10^{-5})$;
- T-Model 4 & 8 (TM4 & TM8) With $K = \widetilde{K}_{2(11)^2} = K_2 + \widetilde{K}_{(11)^2}$ with Free N, $\lambda_{2\overline{y}}\lambda_4$ and M Since $\langle e^K \rangle_{\overline{k}} = 1$.

CHARGE ASSIGNMENTS

SUPERFIELDS:	S	Φ	$\bar{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

000 00 • 00 00	E- & T-Model Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
	000	00 ●	000 00	

KÄHLER POTENTIALS VS KÄHLER MANIFOLDS

The Kähler Manifold Corresponding to $K_{1{ m s}}$ and $\widetilde{K}_{1{ m s}}$

• The Riemannian Metric And The Scalar Curvature of K_{1s} and \widetilde{K}_{1s} is calculated by

$$ds_{1s}^2 = K_{\Phi\Phi^*} d\Phi d\Phi^* = \frac{N}{4} \frac{d\Phi d\Phi^*}{\left(1 - (\Phi + \Phi^*)/2\right)^2} \quad \text{and} \quad \mathcal{R}_{1s} = -K^{\Phi\Phi^*} \partial_{\Phi} \partial_{\Phi^*} \ln(K_{\Phi\Phi^*}) = -\frac{2}{N}$$

• ds_{1s}^2 Remains Invariant under the Transformations

$$\frac{\Phi}{2} \rightarrow \frac{a\Phi/2 + b}{c\Phi/2 + d} \quad \text{Represented By} \quad \mathcal{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}, \quad \text{With} \quad |a|^2 = 1. \quad \textbf{(T_1)}$$

• The Matrix ${\mathcal M}$ Is a Conjugate Anti-Symplectic Matrix, I.e.,

$$\mathcal{M}^{\dagger}E\mathcal{M} = -E$$
 with $E = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. It is Written As $\mathcal{M} = S\sigma_3$ With $S \in U(1, 1)$.

The Kähler Manifold Corresponding to $K_{(11)^2}$ and $\widetilde{K}_{(11)^2}$

• The Riemannian Metric And The Scalar Curvature, of $K_{(11)^2}$ and $\widetilde{K}_{(11)^2}$ is Calculated by

$$ds_{(11)^2}^2 = K_{a\bar{\beta}} dz^{\alpha} dz^{*\bar{\beta}} = \frac{N |d\Phi|^2}{\left(1 - 2|\Phi|^2\right)^2} + \frac{N |d\bar{\Phi}|^2}{\left(1 - 2|\bar{\Phi}|^2\right)^2} \quad \text{and} \quad \mathcal{R}_{(11)^2} = -K^{a\bar{\beta}} \partial_a \partial_{\bar{\beta}} \ln\left(\det M_{\bar{\Phi}\Phi}\right) = -\frac{8}{N}, \quad z^{\alpha\beta} = \Phi, \bar{\Phi}, \quad z^{\alpha\beta} = \Phi, \bar{\Phi}, \quad z^{\alpha\beta} = \Phi, \bar{\Phi}, \quad z^{\alpha\beta} = \Phi, \quad z^{\alpha\beta} = \Phi$$

• $ds^2_{(11)^2}$ Remains Invariant under the Transformations – We Assign the Charges $(B - L)(\alpha_1, b_1, \alpha_2, b_2) = (0, 1, 0, -1)$:

$$\sqrt{2}\Phi \rightarrow \frac{\alpha_1 \sqrt{2}\Phi + b_1}{b_1^* \sqrt{2}\Phi + \alpha_1} \quad \text{and} \quad \sqrt{2}\bar{\Phi} \rightarrow \frac{\alpha_2 \sqrt{2}\bar{\Phi} + b_2}{b_2^* \sqrt{2}\bar{\Phi} + \alpha_2}, \quad \text{Where} \quad \alpha_i^2 - |b_i|^2 = 1 \quad \text{With} \quad i = 1, 2$$

• The Corresponding Matrices \mathcal{U}_i are Elements Of The Coset Spaces $(SU(1,1)/U(1))_{\Phi}$ and $(SU(1,1)/U(1))_{\Phi}$ Since

$$\mathcal{U}_i = \begin{pmatrix} \alpha_i & b_i \\ b_i^* & \alpha_i \end{pmatrix} \text{ with } \alpha_i \in \mathbb{R}_+, \ b_i \in \mathbb{C} \text{ and } \alpha_i^2 - |b_i| = 1.$$

E- & T-Model Inflation 000 00	SUGRA Framework OO O	Inflationary Scenarios	Conclusions
INFLATIONARY POTENTIALS			

E-MODEL INFLATION (GAUGE SINGLET INFLATON)

• Expanding Φ and S as Follows: $\Phi = \phi e^{i\theta}$ and $S = (s_1 + is_2)/\sqrt{2}$ We Can Introduce The Canonically Normalized Fields

$$d\widehat{\phi}/d\phi = J \simeq \sqrt{N/2}/f_1 \implies \phi = 1 - \exp\left(-\sqrt{2/N}\widehat{\phi}\right), \quad \widehat{\theta} \simeq J\phi\theta \quad \text{and} \quad \widehat{s_i} = s_i \quad \text{with} \quad i = 1,2 \quad (\text{Recall} \quad f_1 = 1 - \phi)$$

WHERE WE OBSERVE THAT WE ESTABLISHED THE CORRECT NON-MINIMAL KINETIC MIXING.

• Along The Inflationary Path $\langle S \rangle_{I} = \langle \theta \rangle_{I} = 0$, the only Surviving term of V_{F} is (where $r_{ij} = -\lambda_i/\lambda_j$ with i, j = 1, 2)

$$V_{1} = \langle e^{K}K^{SS^{*}} | W_{,S} |^{2} \rangle_{I} = \begin{cases} \left(\phi - r_{21}\phi^{2} - M_{1}^{2} \right)^{2} / f_{1}^{N} & \text{for } \delta \text{EM}, \\ \left(\phi - r_{21}\phi^{2} - M_{1}^{2} \right)^{2} & \text{for } \text{EM2}, \\ \left(\phi^{2} - r_{12}\phi - M_{2}^{2} \right)^{2} & \text{for } \text{EM4}, \end{cases}$$
 where $\lambda = \begin{cases} \lambda_{1} & \text{and } M_{1} = M / \sqrt{\lambda_{1}} & \text{for } \delta \text{EM} \text{ and } \text{EM2}, \\ \lambda_{2} & \text{and } M_{2} = M / \sqrt{\lambda_{2}} & \text{for } \text{EM4}. \end{cases}$

Scalar Mass-Squared Spectrum for $K = K_{21s}$ and \widetilde{K}_{21s} Along The Inflationary Trajectory

Fields	EIGEN-	Masses Squared		
	STATES		$K = K_{21s}$	$K = \widetilde{K}_{21s}$
1 REAL SCALAR	$\widehat{ heta}$	\widehat{m}_{θ}^2	$6H_{I}^{2}$	
2 real scalars	$\widehat{s}_1, \ \widehat{s}_2$	\widehat{m}_s^2	$6H_{\rm I}^2/N_S$	
2 Weyl spinors	$(\widehat{\psi}_{\Phi} \pm \widehat{\psi}_S)/\sqrt{2}$	$\widehat{m}_{\psi\pm}^2$	$6n(1 - \phi)$	$^{2}H_{\mathrm{I}}^{2}/N\phi^{2}$

WE OBSERVE THE FOLLOWING:

• All mass² > 0. Especially $m_{\widetilde{S}}^2 > 0 \iff N_S < 6;$

• All mass² > H²₁ and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated.

THE ONE-LOOP RADIATIVE CORRECTIONS HAVE NO SIGNIFICANT EFFECT.

イロト イタト イヨト イヨト 三日

E- & T-Model Inflation 000 00	SUGRA Framework 00 0	Inflationary Scenarios	Conclusions
INFLATIONARY POTENTIALS			

T-MODEL INFLATION (GAUGE NON-SINGLET INFLATON)

• If We Use The Parametrizations: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi}$ and $\bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi}$ with $0 \le \theta_{\Phi} \le \pi/2$ and $S = (s + i\bar{s}) / \sqrt{2}$ We Select as Inflationary Path The D-Flat Direction Is $\langle \theta \rangle_{I} = \langle \bar{\theta} \rangle_{I} = 0$, $\langle \theta_{\Phi} \rangle_{I} = \pi/4$ and $\langle S \rangle_{I} = 0$ (: P)

• The only Surviving term of V_F Along the Path in Eq. (P) is (With $r_{ij} = -\lambda_i/\lambda_j$ with i, j = 2, 4)

$$V_{\rm I} = \langle e^{K} K^{SS^{*}} | W_{,S} |^{2} \rangle_{\rm I} = \frac{\lambda^{2}}{16} \begin{cases} \left(\phi^{2} - r_{42} \phi^{4} - M_{2}^{2} \right)^{2} / f_{2}^{N} & \text{for } \delta \text{TM}, \\ \left(\phi^{2} - r_{42} \phi^{4} - M_{2}^{2} \right)^{2} & \text{for } \text{TM4}, \end{cases}$$
 where $\lambda = \begin{cases} \lambda_{2} \text{ and } M_{2} = M / \sqrt{\lambda_{2}} & \text{for } \delta \text{TM} \text{ and } \text{TM4}, \\ \lambda_{4} \text{ and } M_{4} = M / \sqrt{\lambda_{4}} & \text{for } \text{TM8}. \end{cases}$

• TO OBTAIN TMI, WE HAVE TO ESTABLISH THE CORRECT NON-MINIMAL KINETIC MIXING.

• TO THIS END WE COMPUTE THE KÄHLER METRIC Kaß Along the Path in Eq. (P) Which Takes The Form

$$\left(\langle K_{a\bar\beta}\rangle_{\rm I}\right) = \left(\langle M_{\Phi\bar\Phi}\rangle_{\rm I}, \langle K_{SS^*}\rangle_{\rm I}\right) \quad \text{with} \quad \langle M_{\Phi\bar\Phi}\rangle_{\rm I} = \kappa\, {\rm diag}(1,1), \\ \kappa = N/f_2^2 \quad \text{and} \quad K_{SS^*} = 1.$$

• THE EF CANONICALLY NORMALIZED FIELDS, WHICH ARE DENOTED BY HAT, CAN BE OBTAINED AS FOLLOWS:

$$d\widehat{\phi}/d\phi = J = \sqrt{2N}/f_2 \implies \phi = \tanh \frac{\widehat{\phi}}{2\sqrt{N}}, \quad \widehat{\theta}_{\pm} = \sqrt{\kappa}\phi\theta_{\pm} \text{ and } \widehat{\theta}_{\Phi} = \sqrt{2\kappa}\phi \left(\theta_{\Phi} - \pi/4\right), \quad \left(\widehat{s}, \widehat{\overline{s}}\right) = \left(s, \overline{s}\right)$$

• WE HAVE, ALSO, TO CHECK THE STABILITY OF THE TRAJECTORY IN EQ. (P) W.R.T THE FLUCTUATIONS OF THE VARIOUS FIELDS, I.E.

 $\frac{\partial V}{\partial \overline{z}^{\alpha}}\Big|_{\text{Eq. (P)}} = 0 \quad \text{and} \quad \widehat{m}_{z^{\alpha}}^{2} > 0 \quad \text{Where} \quad \widehat{m}_{z^{\alpha}}^{2} = \text{Egv}\left[\widehat{M}_{a\beta}^{2}\right] \quad \text{With} \quad \widehat{M}_{a\beta}^{2} = \left. \frac{\partial^{2} V}{\partial \overline{z}^{\alpha} \partial \overline{\mathcal{I}}^{\beta}} \right|_{\text{Eq. (P)}} \quad \text{and} \quad z^{\alpha} = \theta_{-}, \theta_{+}, \theta_{\Phi}, s, \overline{s}.$

Here EgV are the Eigenvalues of the Matrix \widehat{M}^2_{aeta} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

E- & T-Model Inflation 000 00	SUGRA Framework OO O	Inflationary Scenarios	Conclusions
INFLATIONARY POTENTIALS			

STABILITY OF THE INFLATIONARY DIRECTION

Scalar Mass-Squared Spectrum for $K = K_{2(11)^2}$ and $\widetilde{K}_{2(11)^2}$ Along The Inflationary Trajectory

Fields	EIGEN-	Masses Squared		
	STATES		$K = K_{221}$	$K = \widetilde{K}_{221}$
2 real	$\widehat{\theta}_{+}$	$m_{\widehat{\theta}+}^2$	3H _I ²	
SCALARS	$\widehat{\theta}_{\Phi}$	$\widehat{m}_{\theta_{\Phi}}^{2}$ $M_{BL}^{2} + 6H_{I}^{2}(1 + 4/N - 2/N\phi^{2} - 2\phi^{2}/N)$		
1 COMPLEX	s, \bar{s}	\widehat{m}_s^2	$6H_{\rm I}^2(1/N_S-8(1-\phi^2)/N+N\phi^2/2$	$6H_{\rm I}^2(1/N_S - 4/N$
SCALAR			$+2(1-2\phi^2)+8\phi^2/N)$	$+2/N\phi^2+2\phi^2/N)$
1 gauge boson	A_{BL}	M_{BL}^2	$2Ng^2\phi^2/f_2^2$	
4 Weyl	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	$12f_2^2H_{\rm I}^2/N^2\phi^2$	
SPINORS	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$2Ng^2\phi^2/f_2^2$	

• We can Obtain $\forall \alpha, \ \widehat{m}_{y^{\alpha}}^2 > 0$. Especially $\widehat{m}_s^2 > 0 \iff N_S < 6$.

• We can Obtain $\forall \alpha$, $\widehat{m}_{\nu \alpha}^2 > H_{I}^2$ and So Any Inflationary Perturbations Of The Fields Other Than ϕ Are Safely Eliminated;

- $M_{BL} \neq 0$ Signals the Fact that That $U(1)_{B-L}$ Is Broken and so, no Topological Defects are Produced.
- We Determine M Demanding That The Unification Scale $M_{GUT} \simeq 2/2.433 \times 10^{-2}$ is Identified with M_{BL} at the Vacuum, i.e.,

 $\langle M_{BL}\rangle = \sqrt{2N}gM/\langle f_2\rangle = M_{\rm GUT} \ \Rightarrow \ M \simeq M_{\rm GUT}/g \sqrt{2N} \ \text{with} \ g \simeq 0.7 \ \text{(GUT Gauge Coupling)}.$

• THE ONE-LOOP RADIATIVE CORRECTIONS À LA COLEMAN-WEINBERG TO VI CAN BE KEPT UNDER CONTROL.

E- & T-Model Inflation 000 00	SUGRA Framework OO O	Inflationary Scenarios	Conclusions
INFLATIONARY ORSERVABLES - RESULTS			

TESTING AGAINST THE INFLATIONARY DATA

- Enforcing $N_{\star} \simeq 44 56$ and $\sqrt{A_s} = 4.588 \cdot 10^{-5}$, we Obtain the Allowed Curves for Our Models In the $n_s r_{0.002}$ Plane
- In Both Models $\phi_{\star} \sim 1$ and the Relevant Tuning can be Qualified by Computing $\Delta_{\star} = (1 \phi_{\star})/1$.

E-MODEL INFLATION

- The Free Parameters For δ EM, EM2, EM4 are (δ_{21}, M_1) , (N, r_{21}, M_1) and (N, r_{12}, M_2) .
- We Fix $M_1 = 0.001$ for δEM , $M_1 = 0.01$ and $r_{21} = 0.001$ for EM2 and $M_2 = 0.01$ and $r_{12} = 0.001$ for EM4.

Model:	δEM	EM2	EM4
$\delta_{21} / r_{21} / r_{12}$	$-1.7 \cdot 10^{-5}$	0.001	0.001
Ν	2	10	10
$\phi_{\star}/0.1$	9.9	9.53	9.84
$\Delta_{\star}(\%)$	1	4.7	2
$\phi_{\rm f}/0.1$	6.66	3.7	5.6
w _{rh}	-0.24	-0.08	0.26
N_{\star}	44.4	51.5	55.5
$\lambda/10^{-5}$	1.2	2.1	1.9
$n_{\rm s}/0.1$	9.65	9.64	9.65
$r/10^{-2}$	0.44	1.3	1.1

• For δ EM the Whole Observationally Favored Range Can Be Covered For δ_{21} 's close to 10^{-5} and r Remaining Below 0.01. For $n_s = 0.967$ We find $\delta_{21} = -1.7 \cdot 10^{-5}$ And r = 0.003.

• For EM2 & EM4 we see that $r \lesssim 0.04$ Increases With N and Δ_{\star} Yielding Upper Bounds

 $\text{l.e.,} \quad 0.96 \lesssim n_{\text{s}} \lesssim 0.965, \quad 0.5 \lesssim N \lesssim 65, \quad 0.24 \gtrsim \Delta_{\star}/10^{-2} \gtrsim 65 \quad \text{and} \quad 0.00076 \lesssim r \lesssim 0.04 \, . \ \text{and} \quad 0.00076 \ \text{and} \ 0.00076 \ \text{$

E- & T-Model Inflation 000 00	SUGRA Framework 00 0	Inflationary Scenarios	Conclusions
INFLATIONARY OBSERVABLES - RESULTS			

T-MODEL INFLATION

• THE FREE PARAMETERS FOR

 δ TM, TM4, TM8 are $(\delta_{42}, M_2), (N, r_{42}, M_2)$ and (N, r_{24}, M_4) .

• *M* is Determined Requiring $\langle M_{BL} \rangle = M_{GUT} \simeq 2/2.433 \times 10^{-2} \implies M_2, M_4 \simeq 0.001.$

Model:	δTM	TM4	TM8
δ_{42} / r_{42} / r_{24}	$-3.6 \cdot 10^{-5}$	0.01	10-6
Ν	2	12	12
$\phi_{\star}/0.1$	9.9555	9.75	9.877
$\Delta_{\star}(\%)$	0.445	2.5	1.23
$\phi_{\rm f}/0.1$	5.9	3.9	6.5
w _{rh}	0.33	0.266	0.58
N_{\star}	55.2	56.4	58
$\lambda/10^{-5}$	3.6	8.6	8.5
$n_{\rm s}/0.1$	9.65	9.64	9.65
$r/10^{-2}$	0.26	1.4	1.3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• For δ TM We Obtain Results Similar to those for δ EM. For δ_{21} 's close to 10^{-5} and r Remaining Below 0.01. For $n_s = 0.965$ We find $\delta_{21} = -3.6 \cdot 10^{-5}$ And r = 0.0026.

• For TM4& TM8 $n_{
m s}$ is Concentrated Close to Its Central Value And $r \lesssim 0.04$ Increases With $N \lesssim 40$ and Δ_{\star}

 $0.963 \lesssim n_{\rm s} \lesssim 0.965, \quad 0.1 \lesssim N \lesssim 40, \quad 0.45 \gtrsim \Delta_{\star}/10^{-2} \gtrsim 13.6 \quad \text{and} \quad 0.0025 \lesssim r \lesssim 0.039 \,.$

• In the case of EMI, We obtain Less Tuning Regarding Δ_{\star} .

э

E- & T-Model Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000	00	000	
00	0	00	

CONCLUSIONS

- WE PROPOSED NEW IMPLEMENTATIONS OF E- AND T-MODEL INFLATION WITHIN SUGRA.
- IN OUR APPROACH, WE REALIZED EMI AND TMI WITH A GAUGE SINGLET AND A NON-SINGLET INFLATONS RESPECTIVELY.
- FOR BOTH MODELS WE EMPLOY W'S CONSISTENT WITH AN R SYMMETRY AND WE CAN SINGLE OUT TWO SUB-CLASSES:
 - One (with Representatives δ EM & δ TM) Where K has one Logarithmic Term and the Pole Appears not only in the Inflationary Kinetic term but also in V_1 . Selecting Specific Curvature \mathcal{R}_K and Mildly Tuning two W terms We can Almost Eliminate the Pole from V_1 . All n_s Values are Possible and r is Rather Low, $r \le 5 \cdot 10^{-3}$.
 - One (with Representatives EM2 & EM4, TM4 & TM8) Where K has Three Logarithmic Terms and the Pole Appears Only in the Inflationary Kinetic term. In this Class Of Models, n_s is Close to its Central Value, 0.965, and r Increases with $\mathcal{R}_K \sim -1/N$.

THANK YOU!