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E- & T-Model Inflation SUGRA Framework Inflationary Scenarios Conclusions

FromMinimal to Pole Chaotic Inflation

Observational Status of Chaotic Inflation (CI)

• Motivation: The Power-Law Potentials, Employed in Modes of CI, of the form
VI = λ2φn or VI = λ2(φ2 − M2)n/2 For M � mP = 1. (:I)

are Very Common in Physics and so It is Easy the Identification of the Inflaton φ With a Field Already Present in the Theory;
E.g., Within Higgs Inflation (HI) the Inflaton Could Play, At The End Of Inflation, The Role Of A Higgs Field.

• However, For n = 2, 4 The Theoretically Derived Values For Spectral Index ns and/or Tensor-to-Scalar Ratio r Are Not
ConsistentWith the Observational Ones.

• The Combined Bicep2/Keck Array and Planck Results Require, for Fitted As and N? – see Below –,
ns = 0.965 ± 0.009 and r . 0.032 at 95% c.l.

a-attractors T-models

a-attractors E-models

• On the Contrary, Observationally Friendly Are Models of
CI Collectively Named α-Attractors.
• These can be Classified into E-Model Inflation (EMI) (or
α-Starobinsky model) and T-Model Inflation (TMI) And Are
Based on a Specific Relation Established Between the Initial,
φ, and the Canonically Normalized Inflaton φ̂. I.e.

Vα =

VE

(
1 − Exp

(
−
√

2/Nφ̂
))
for EMI,

VT

(
tanh

(
φ̂/
√

2N
))

for TMI,

where N > 0 and VE,T = VI(φ) – See Eq. (I).
• Such Relations Between φ and φ̂ Can be Achieved in the The
Presence Of A Pole In The Inflaton Kinetic Term.
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FromMinimal to Pole Chaotic Inflation

Introducing A Kinetic Pole In the Inflaton Sector

• To Analyze Systematically the non-Minimal Kinetic Mixing in the inflaton SectorWe Consider the Lagrangian Of The
Homogenous Inflaton Field φ = φ(t)

L =
√
−g

 Np

2 f 2
p
φ̇2 − VI(φ)

 with fp = 1 − φp, p = 1, 2 and Np > 0.

Where we set mP = 1 and g is the Determinant Of The Background Metric gµν.

• If we Introduce the Canonically Normalized Field, φ̂, Defined As Follows:

dφ̂
dφ

= J =

√
Np

fp
⇒ φ =


1 − e−φ̂/

√
N1 for p = 1,

tanh
(

φ̂
√

N2

)
for p = 2 ,

L in terms of φ̂ Takes the Form

L =
√
−g

(
1
2
gµν∂µφ̂∂νφ̂ − VI

(
φ̂
))

With VI(φ̂) = VE/T

(
φ̂(φ)

)
·

•We can Show that for a Suitable Choice of fp Including A Pole1 the Potential VI(φ̂) Develops A Plateau, and so it Becomes
Suitable to Drive Observationally Acceptable CI.

• The Analysis of E- and/or T-Model Inflation (ETM) Can Be Performed Exclusively in terms of VI and φ̂ Using The Standard
Slow-Roll Approximation.

1B.J. Broy et al. (2015); T. Terada (2016); T. Kobayashi et al. (2017).
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FromMinimal to Pole Chaotic Inflation

Inflationary Observables and Requirements

• The Number of e-foldings, N?, that the Scale k? = 0.05/Mpc Underwent During CI has to be Sufficient to Resolve
the Horizon and Flatness Problems of Standard Big Bang:

N̂? =

∫ φ̂?

φ̂f

dφ̂
VI

VI,̂φ
=

∫ φ?

φf

dφ J2 VI

VI,φ
' 44 − 56 Depending on wrh ' (−0.24 − 0.58), Where

• The Barotropic Index wrh Depends on the Degree of the Polynomial in VI;
• φ? [φ̂?] is The Value of φ [φ̂] When k? Crosses Outside The Inflationary Horizon;
• φf [φ̂f ] is the Value of φ [φ̂] at the end of HI Which Can Be Found From The Condition:

max{̂ε(φf ), |̂η(φf )|} = 1, With ε̂ =
1
2

( VI,̂φ

VI

)2

=
1

2J2

(
VI,φ

VI

)2

and η̂ =
VI,̂φφ̂

V
=

1
J2

(
VI,φφ

VI
−

VI,φ

VI

J,φ
J

)
·

• The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Consistent with Planck Data:

A1/2
s =

1

2
√

3 π

VI(φ̂?)3/2

|VI,̂φ(φ̂?)|
=
|J(φ?)|

2
√

3 π

VI(φ?)3/2

|VI,φ(φ?)|
= 4.588 · 10−5

• The Remaining Observables are found as:

ns = 1 − 6̂ε? + 2̂η?, αs = 2
(
4̂η2

? − (ns − 1)2
)
/3 − 2̂ξ? and r = 16̂ε?,

Where ξ̂ = VI,̂φVI,̂φφ̂φ̂/V
2
I = VI,φ η̂,φ/VI J2 + 2̂η̂ε And The VariablesWith Subscript ? Are Evaluated at φ = φ?.

• We Have To Check The Hierarchy Between The Ultraviolet Cut-off ΛUV ∼ mP, of the Effective Theory And The
Inflationary Scale. In Particular, The Validity Of The Effective Theory Implies:

(a) VI(φ∗)1/4 ≤ ΛUV for (b) φ ≤ ΛUV
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Non-SUSY E- & T-Model Inflation

E-Model Inflation (Pole of Order One)

• The Simplest Choice It would be The Pole in in the Kinetic Part of L to be of Order One. I.e.,:

f1 = 1 − φ and VI = VE = λ2φn/n With N1 > 0 .
• Canonically Normalizing φ, we Obtain

φ̂ = −
√

N1 ln (1 − φ) or φ = 1 − e−
√

N1 φ̂

• VI in Terms of φ̂ Experiences A Stretching For φ̂ > 1 Which Results To A Plateau, i.e., VI = λ2(1 − e−
√

N1/2φ̂)n/n
– E.g., For n = 2 we Obtain theWell-Known Starobinsky Model and the Plots Below.
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Here, ε ' n f12/2N1φ
2 and η ' n f1(n f1 − 1)/N1φ

2. Therefore, N? ' N1φ
2
?/n f1? ⇒ φ? =

√
nN?/(nN? + N1) ∼ 1 � φf .

• The Constraint on As Yields A1/2
s ' λN?/2

√
3nNπ = 4.588 · 10−5 ⇒ λ ' 2

√
3nNAsπ/N? ⇒ λ ∼ 10−6 for N? ' 55

• The Other Observables Are ns ' 1 − 2/N? ' 0.965, αs ' −2/N2
? = 9.5 · 10−4 and r ' 8N1/N2

? ≤ 0.07 ⇒ N1 . 19.
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Non-SUSY E- & T-Model Inflation

T-Model Inflation (Pole of Order Two)

• IfWe Introduce a Pole of Order Two in the Kinetic Part of L2 We Obtain:

f2 = 1 − φ2 and VT = λ2
(
φ2 − M2

)2
/16 With M � 1 & N2 > 0 .

• Canonically Normalizing φ, we Obtain φ ∼ tanh φ̂ and hence the Name T-Model (TMI) HI

φ̂ =
√

N2 ln ((1 + φ)/(1 − φ)) or φ = tanh
(
φ̂/

√
N2

)
• VI in Terms of φ̂ Experiences A Stretching For φ̂ > 1 Which Results To A Plateau, i.e., VI = λ2 tanh4(φ̂/

√
2N2)/16.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

 

 

V
H

I (
10

- 
11

)

φ

  

*
φ

φ
f

0.000 0.001 0.002 0.003 0.004
0.0

2.0x10-9

4.0x10-9

6.0x10-9

8.0x10-9

1.0x10-8

1.2x10-8

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

φ
f

N = 18
λ  = 1.1 10-4

 

 

V
H

I (
10

- 
11

)

φ

  *

^

^

^
φ

Here, ε ' 16 f22/N2φ
2 and η ' 8 f2(3 − 5φ2)/N2φ

2. Therefore, N? ' N2φ
2
?/4 f2? ⇒ φ? =

√
4N?/

√
4N? + N2 ∼ 1 � φf .

• The Constraint on As Yields A1/2
s '

√
2λN?/

√
3N2π = 4.588 · 10−5 ⇒ λ ' 4

√
6N2Asπ/N? ⇒ λ ∼ 10−5 for N? ' 55

• The Other Observables Are ns ' 1 − 2/N? ' 0.965, αs ' −2/N2
? = 9.5 · 10−4 and r ' 2N2/N2

? ≤ 0.032 ⇒ N2 . 55.
2R. Kallosh and A. Linde (2013); J. Ellis, D.V. Nanopoulos and K.A. Olive (2013).
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Gauge Singlet Vs Non-Singlet Inflaton

SUGRA Scalar Potential

• HowWe Can Formulate Pole-InflationWithin SUGRA?

• The General Lagrangian For The Scalar Fields zα Plus Gravity In Four Dimensional, N = 1 SUGRA is:

L =
√
−g

(
−

1
2
R + Kαβ̄g

µνDµzαDνz∗β̄ − V
)

Where V = VF + VD With

VD = g2D2
a/2

VF = eK
(
Kαβ̄FαF∗

β̄
− 3|W |2

)
Also Kαβ̄ =

∂2K
∂zα∂z∗β̄

> 0 and K β̄αKαγ̄ = δ
β̄
γ̄; Dµzα = ∂µzα + igAa

µT a
αβzβ, Fα = W,zα + K,zαW and Da = zα (Ta)αβ K,zβ

Aa
µ is The Vector Gauge Fields, g is the Gauge Coupling and Ta are the Generators of the Gauge Transformations Of zα.
• The Kinetic Mixing is Controlled by The Kähler Potential K Which Affects Also V. This Consists a ComplicationWith
Respect the non-SUSY case AndWe Show Below HowWe Arrange it in twoWays. V Depends on Superpotential W Too.
•We Concentrate on CI Driven by VF – As we show BelowWe Can Easily Assure VD = 0 During CI.

Introduction of the Stabilizer Field

• EMI Can be Systematically Formulated in SUGRA IfWe Introduce A Gauge Singlet Superfield z1 = S called Stabilizer or
Goldstino. Its Introduction is Necessary For the Following Reasons:

• It Generates the non-SUSY Potential From the term |W,S |
2 for S = 0. E.g., For W = λS Φn/2 We Obtain

〈VF〉I = 〈eK KS S ∗ |W,S |
2〉I ∈ Vnon−SUSY = λ2φn with φ = Re(Φ) the (initial) inflaton.

• It Assures the Boundedness of VF: IfWe set S = 0 During Inflation, the Terms K,zαW, α , 1, and −3|W |2 Vanish. The
2nd one May Render VF Unbounded From Below.

• It can be Stabilized at S = 0 Without Invoking Higher Order Terms, if we Select 3:
K2 = NS ln

(
1 + |S |2/NS

)
⇒ KS S ∗

2 = 1 With 0 < NS < 6 Which Parameterizes the Compact Manifold S U(2)/U(1).
3C.P. and N. Toumbas (2016).
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Gauge Singlet Vs Non-Singlet Inflaton

E-Model Inflation (EMI)

•We Select another Gauge Singlet Superfield z1 = Φ (the Inflaton) and the Most General W ConsistentWith the R
Symmetry UnderWhich R(S ) = R(W), W = S

(
λ1Φ + λ2Φ2 − M2

)
.

•We Obtain A Pole Of order 1 in the Kinetic Terms, If we Adopt

K1s = −N ln
(
1 − (Φ + Φ∗)/2

)
or K̃1s = −N ln

(1 − Φ/2 − Φ∗/2)
(1 − Φ)1/2(1 − Φ∗)1/2 , with Re(Φ) < 1 and N > 0.

• Keeping in Mind that the Pole has to be Eliminated from VI for K = K1s, We analyze the Following Models:

• δ E-Model (δEM) With K = K21s = K2 + K1s with N = 2,M � 1and λ2 ' λ1(1 + δ21) with δ21 = O(10−5);
• E-Model 2 & 4 (EM2 & EM4) With K = K̃21s = K2 + K̃1s with Free N, λ1, λ2 and M � 1 Since 〈eK 〉I = 1.

T-Model Inflation (TMI)

•We Use 2 Extra (Gauge non-Singlet) Superfields z2 = Φ, z3 = Φ̄, Charged Under a Local Symmetry, e.g. U(1)B−L.

• Superpotential W = S
(
λ2Φ̄Φ/2 − M2/4 + λ4(Φ̄Φ)2

)
• W Is Uniquely Determined Using U(1)B−L and an R Symmetry
and Leads to a Grand Unified Theory (GUT) Phase Transition

At The SUSY Vacuum 〈S 〉 = 0, |〈Φ〉| = |〈Φ̄〉| ∼ M/
√

2

Charge Assignments
Superfields: S Φ Φ̄

U(1)R 1 0 0
U(1)B−L 0 1 −1

•We Obtain A Pole Of order 2 in the Kinetic Terms, If we Adopt

K(11)2 = −
N
2

ln
(
1 − 2|Φ|2

) (
1 − 2|Φ̄|2

)
or K̃(11)2 = −

N
2

ln

(
1 − 2|Φ|2

) (
1 − 2|Φ̄|2

)
(1 − 2Φ̄Φ)1/2(1 − 2Φ̄∗Φ∗)1/2

,

• Keeping in Mind that the Pole has to be Eliminated from VI for K = K(11)2 , We Analyze The Following Models:

• δ T-Model (δTM) With K = K2(11)2 = K2 + K(11)2 with N = 2 and λ4 = λ2(1 + δ42) in W with δ42 = O(10−5);

• T-Model 4 & 8 (TM4 & TM8) With K = K̃2(11)2 = K2 + K̃(11)2 with Free N, λ2, λ4 and M Since 〈eK 〉I = 1.
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Kähler Potentials Vs KählerManifolds

The Kähler Manifold Corresponding to K1s and K̃1s

• The Riemannian Metric And The Scalar Curvature of K1s and K̃1s is calculated by

ds2
1s = KΦΦ∗dΦdΦ∗ =

N
4

dΦdΦ∗

(1 − (Φ + Φ∗)/2)2 and R1s = −KΦΦ∗∂Φ∂Φ∗ ln (KΦΦ∗ ) = −
2
N
.

• ds2
1s Remains Invariant under the Transformations

Φ

2
→

aΦ/2 + b
cΦ/2 + d

Represented By M =

a b
c d

 = a
1 0

2 −1

, With |a|2 = 1. (T1)

• The MatrixM Is a Conjugate Anti-Symplectic Matrix, I.e.,

M†EM = −E with E =

 0 1
−1 0

. It isWritten As M = Sσ3 With S ∈ U(1, 1).

The Kähler Manifold Corresponding to K(11)2 and K̃(11)2

• The Riemannian Metric And The Scalar Curvature, of K(11)2 and K̃(11)2 is Calculated by

ds2
(11)2

= Kαβ̄dzαdz∗β̄ =
N |dΦ|2(

1 − 2|Φ|2
)2 +

N |dΦ̄|2(
1 − 2|Φ̄|2

)2 and R(11)2 = −Kαβ̄∂α∂β̄ ln
(
det MΦ̄Φ

)
= −

8
N
, zα,β = Φ, Φ̄

• ds2
(11)2

Remains Invariant under the Transformations – We Assign the Charges (B − L)(α1, b1, α2, b2) = (0, 1, 0,−1):

√
2Φ→

α1
√

2Φ + b1

b∗1
√

2Φ + α1
and

√
2Φ̄→

α2
√

2Φ̄ + b2

b∗2
√

2Φ̄ + α2
, Where α2

i − |bi |
2 = 1 With i = 1, 2

• The Corresponding MatricesUi Are Elements Of The Coset Spaces (S U(1, 1)/U(1))Φ and (S U(1, 1)/U(1))Φ̄ Since

Ui =

αi bi
b∗i αi

 with αi ∈ R+, bi ∈ C and α2
i − |bi | = 1.
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Inflationary Potentials

E-Model Inflation (Gauge Singlet Inflaton)

• Expanding Φ and S as Follows: Φ = φeiθ and S = (s1 + is2)/
√

2 We Can Introduce The Canonically Normalized Fields

dφ̂/dφ = J '
√

N/2/ f1 ⇒ φ = 1 − exp
(
−

√
2/Nφ̂

)
, θ̂ ' Jφθ and ŝi = si with i = 1, 2 (Recall f1 = 1 − φ)

WhereWe observe thatWe Established the Correct Non-Minimal Kinetic Mixing.
• Along The Inflationary Path 〈S 〉I = 〈θ〉I = 0, the only Surviving term of VF is (where ri j = −λi/λ j with i, j = 1, 2)

VI = 〈eK KS S ∗ |W,S |
2〉I =


(
φ − r21φ

2 − M2
1

)2
/ f N

1 for δEM,(
φ − r21φ

2 − M2
1

)2
for EM2,(

φ2 − r12φ − M2
2

)2
for EM4,

where λ =

λ1 and M1 = M/
√
λ1 for δEM and EM2,

λ2 and M2 = M/
√
λ2 for EM4.

Scalar Mass-Squared Spectrum for K = K21s and K̃21s Along The Inflationary Trajectory

Fields Eigen- Masses Squared

states K = K21s K = K̃21s

1 real scalar θ̂ m̂2
θ 6H2

I

2 real scalars ŝ1, ŝ2 m̂2
s 6H2

I /NS

2 Weyl spinors (ψ̂Φ ± ψ̂S )/
√

2 m̂2
ψ± 6n(1 − φ)2H2

I /Nφ
2

We Observe the Following:
• All mass2 > 0. Especially m2

Ŝ
> 0 ⇔ NS < 6;

• All mass2 > H2
I and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated.

• The One-Loop Radiative Corrections Have No Significant Effect.
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Inflationary Potentials

T-Model Inflation (Gauge Non-Singlet Inflaton)

• IfWe Use The Parametrizations: Φ = φeiθ cos θΦ and Φ̄ = φeiθ̄ sin θΦ with 0 ≤ θΦ ≤ π/2 and S = (s + is̄) /
√

2

We Select as Inflationary Path The D-Flat Direction Is 〈θ〉I = 〈θ̄〉I = 0, 〈θΦ〉I = π/4 and 〈S 〉I = 0 (: P)

• The only Surviving term of VF Along the Path in Eq. (P) is (With ri j = −λi/λ j with i, j = 2, 4)

VI = 〈eK KS S ∗ |W,S |
2〉I =

λ2

16


(
φ2 − r42φ

4 − M2
2

)2
/ f N

2 for δTM,(
φ2 − r42φ

4 − M2
2

)2
for TM4,(

φ4 − r24φ
2 − M2

4

)2
for TM8,

where λ =

λ2 and M2 = M/
√
λ2 for δTM and TM4,

λ4 and M4 = M/
√
λ4 for TM8.

• To Obtain TMI, We Have to Establish the Correct Non-Minimal Kinetic Mixing.

• To This EndWe Compute The Kähler Metric Kαβ̄ Along the Path in Eq. (P) Which Takes The Form(
〈Kαβ̄〉I

)
=

(
〈MΦΦ̄〉I, 〈KS S ∗ 〉I

)
with 〈MΦΦ̄〉I = κ diag(1, 1), κ = N/ f 2

2 and KS S ∗ = 1.

• The EF Canonically Normalized Fields, Which Are Denoted By Hat, Can Be Obtained As Follows:

dφ̂/dφ = J =
√

2N/ f2 ⇒ φ = tanh
φ̂

2
√

N
, θ̂± =

√
κφθ± and θ̂Φ =

√
2κφ (θΦ − π/4) ,

(̂
s,̂̄s) = (s, s̄) ·

•We Have, Also, to Check the Stability of the Trajectory in Eq. (P) w.r.t the Fluctuations Of The Various Fields, i.e.

∂V
∂̂zα

∣∣∣∣∣
Eq. (P)

= 0 and m̂2
zα > 0 Where m̂2

zα = Egv
[
M̂2
αβ

]
With M̂2

αβ =
∂2V
∂̂zα∂̂zβ

∣∣∣∣∣∣
Eq. (P)

and zα = θ−, θ+, θΦ, s, s̄.

Here Egv are the Eigenvalues of the Matrix M̂2
αβ.
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Inflationary Potentials

Stability of The Inflationary Direction

Scalar Mass-Squared Spectrum for K = K2(11)2 and K̃2(11)2 Along The Inflationary Trajectory

Fields Eigen- Masses Squared

states K = K221 K = K̃221

2 real θ̂+ m2
θ̂+

3H2
I

scalars θ̂Φ m̂2
θΦ

M2
BL + 6H2

I (1 + 4/N − 2/Nφ2 − 2φ2/N)

1 complex s, s̄ m̂2
s 6H2

I (1/NS − 8(1 − φ2)/N + Nφ2/2 6H2
I (1/NS − 4/N

scalar +2(1 − 2φ2) + 8φ2/N) +2/Nφ2 + 2φ2/N)

1 gauge boson ABL M2
BL 2Ng2φ2/ f 2

2

4 Weyl ψ̂± m̂2
ψ± 12 f 2

2 H2
I /N

2φ2

spinors λBL, ψ̂Φ− M2
BL 2Ng2φ2/ f 2

2

•We can Obtain ∀α, m̂2
χα

> 0. Especially m̂2
s > 0 ⇔ NS < 6.

•We can Obtain ∀α, m̂2
χα

> H2
I and So Any Inflationary Perturbations Of The Fields Other Than φ Are Safely Eliminated;

• MBL , 0 Signals the Fact that That U(1)B−L Is Broken and so, no Topological Defects are Produced.

•We Determine M Demanding That The Unification Scale MGUT ' 2/2.433 × 10−2 is Identified with MBL at the Vacuum, I.e.,

〈MBL〉 =
√

2NgM/〈 f2〉 = MGUT ⇒ M ' MGUT/g
√

2N with g ' 0.7 (GUT Gauge Coupling).

• The One-Loop Radiative Corrections à la Coleman-Weinberg to VI Can Be Kept Under Control.
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Inflationary Observables - Results

Testing Against The Inflationary Data

• Enforcing N? ' 44 − 56 and
√

As = 4.588 · 10−5, we Obtain the Allowed Curves for Our Models In the ns − r0.002 Plane

• In Both Models φ? ∼ 1 and the Relevant Tuning can be Qualified by Computing ∆? = (1 − φ?) /1.

E-Model Inflation

• The Free Parameters For δEM, EM2, EM4 are (δ21,M1), (N, r21,M1) and (N, r12,M2).
•We Fix M1 = 0.001 for δEM, M1 = 0.01 and r21 = 0.001 for EM2 and M2 = 0.01 and r12 = 0.001 for EM4.

9.55 9.60 9.65 9.70 9.75
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 2.8 3.3
- δ

21
 / 10-5

= 2.2

43

22

7

65

20

7

20

46

1.7

55

32

0.9

1.32

 δEM
 EM2
 EM4

r 
(0

.0
1)

 n
s
 (0.1)

1

N = 
Model: δEM EM2 EM4

δ21 / r21 / r12 −1.7 · 10−5 0.001 0.001
N 2 10 10

φ?/0.1 9.9 9.53 9.84
∆?(%) 1 4.7 2
φf/0.1 6.66 3.7 5.6
wrh −0.24 −0.08 0.26
N? 44.4 51.5 55.5

λ/10−5 1.2 2.1 1.9
ns/0.1 9.65 9.64 9.65
r/10−2 0.44 1.3 1.1

• For δEM theWhole Observationally Favored Range Can Be Covered For δ21 ’s close to 10−5 and r Remaining Below 0.01.
For ns = 0.967 We find δ21 = −1.7 · 10−5 And r = 0.003.
• For EM2 & EM4 we see that r . 0.04 IncreasesWith N and ∆? Yielding Upper Bounds

I.e., 0.96 . ns . 0.965, 0.5 . N . 65, 0.24 & ∆?/10−2 & 65 and 0.00076 . r . 0.04 .
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Inflationary Observables - Results

T-Model Inflation

• The Free Parameters For

δTM, TM4, TM8 are (δ42,M2), (N, r42,M2) and (N, r24,M4).

• M is Determined Requiring 〈MBL〉 = MGUT ' 2/2.433 × 10−2 ⇒ M2,M4 ' 0.001.

9.55 9.60 9.65 9.70 9.75
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
N = 

26

4.9

22

- δ
λ
 / 10-5

= 3.6 4.32.2

28

40

32

4

36

12

3
0.1

12

 δTM
 TM4
 TM8

r 
(0

.0
1)

 n
s
 (0.1)

4

Model: δTM TM4 TM8
δ42 / r42 / r24 −3.6 · 10−5 0.01 10−6

N 2 12 12
φ?/0.1 9.9555 9.75 9.877
∆?(%) 0.445 2.5 1.23
φf/0.1 5.9 3.9 6.5
wrh 0.33 0.266 0.58
N? 55.2 56.4 58

λ/10−5 3.6 8.6 8.5
ns/0.1 9.65 9.64 9.65
r/10−2 0.26 1.4 1.3

• For δTM We Obtain Results Similar to those for δEM. For δ21 ’s close to 10−5 and r Remaining Below 0.01.
For ns = 0.965 We find δ21 = −3.6 · 10−5 And r = 0.0026.
• For TM4& TM8 ns is Concentrated Close to Its Central Value And r . 0.04 IncreasesWith N . 40 and ∆?

0.963 . ns . 0.965, 0.1 . N . 40, 0.45 & ∆?/10−2 & 13.6 and 0.0025 . r . 0.039 .

• In the case of EMI, We obtain Less Tuning Regarding ∆?.
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Conclusions

•We Proposed New Implementations of E- and T-Model InflationWithin SUGRA.

• In our Approach, We Realized EMI and TMI With a Gauge Singlet and a non-Singlet Inflatons Respectively.

• For Both ModelsWe Employ W ’s Consistent with an R Symmetry andWe Can Single out two Sub-Classes:

• One (with Representatives δEM & δTM) Where K has one Logarithmic Term and the Pole Appears not only in the
Inflationary Kinetic term but also in VI.
Selecting Specific Curvature RK and Mildly Tuning two W termsWe can Almost Eliminate the Pole from VI.
All ns Values are Possible and r is Rather Low, r ≤ 5 · 10−3.

• One (with Representatives EM2 & EM4, TM4 & TM8) Where K has Three Logarithmic Terms and the Pole Appears
Only in the Inflationary Kinetic term.
In this Class Of Models, ns is Close to its Central Value, 0.965, and r Increases with RK ∼ −1/N.

Thank You!
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