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FLRW geometry

Spatially flat FLRW spacetime
ds?> = —dt? + 2% (t) (dx2 + dy? + dz2) (1)

Field equaitons in General Relativity with matter source

1
Ryv - Engv = Tyv ; TW;V =0 (2)
where R =6 ((2)2 + %) ,
0 A% 4 a\% 3
and
Tuy = puyuy +p (gw + uyuv) ) (4)
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Scalar field cosmology

For comoving observers (u# = (55) and for a FLRW spacetime, the Einstein field
equations are

2 K
H =5 (o)
3H? +2H = —k(Pm + Py)

where H(t) = a/a is the Hubble function.
Furthermore, assuming that the scalar field and matter do not interact, we have
the two following equations

pm +3H<pm + 'Dm) =0

¢+3Hp+Vy=0

while the corresponding equation of state (EoS) parameters are given by
Wm = Pn/p,, and wp = P¢/p¢, where

1. 1.
pp= 39"+ V(@) . Py= 39"~ V(9).
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Point-like Lagrangian

The Lagrangian which provides all the field equations from the variational
principle is a singular Lagrangian of the form

L= S (@3 ()2 () = N(©) Ula)

where the Hamiltonian is also the contraint equation a/v =0, that is,

1
NH =N (27”Vp;4pv + 1) ~0
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Integrability

It is well known that there exists a unique relation between the symmetries of this
kind of systems of differential equations with the symmetries which define the
underlying geometry . That means that any generator of a symmetry vector for the
dynamical system has to be a symmetry also for the geometry. For instance the
conservation law of momentum for the free particle follows from the translation
symmetry of the Euclidean spacetime. The group of translations with the group of
rotations form the group of isometries or Killing vectors of the Euclidean space.
By definition a Killing vector in a Riemannian manifold is the generator of the
transformation which keep invariant the length and the angles. On the other hand,
a Homothetic vector is the generator of the transformation which keep invariant
the angles and rescale by a constant the length, whereas a Conformal vector is
called the generator of the transformation which preserves the angles on the space.
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Integrability

@ Now for autonomous Hamiltonian systems the “Energy” denotes the volume
in the phase space. For any isometry which leave invariant this volume in the
phase space corresponds a conservation law which commutes with the
Hamiltonian. As far as concerns the Homothetic vector, the solutions can be
transformed under other solution but with a rescaled “Energy” value. These
two transformations relates objects which are congruent, with the identical
congruent to be provided by the isometries.

@ The situation is totally different under conformal transformations. Indeed
Hamiltonian systems are not invariant under conformal transformations
except if the “Energy” is zero, which means that the volume in the phase
space has dimensions zero. Moreover the volume continues to be zero under
conformal transformations and consequently conservation laws can be
constructed.
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Integrability

@ In order to demonstrate that mathematically, consider H (p,q) = 0 to be the
energy of an autonomous Hamiltonian system and / (p, q) be a conservation
law generated by a conformal vector. Then it follows that there exists a
function, w, such that D¢ (I) = I+ +{l,'H} = wH; thatis, D; (I) =0,
which means that / is a conservation law. These kinds of conservation laws
are generated by nonlocal symmetries, which reduce to local when w = const
or w=0.
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Integrability

@ Because of the constraint equation we can say that the Energy of the
Mechanical analogue is zero and construct conservation laws by using the
conformal algebra of the minisuperspace. In particular, for every Conformal
vector field there corresponds a conservation law for the field equations, for
any function, V (¢). Moreover, because the minisuperspace has dimension
two, it admits an infinite-dimensional conformal algebra, that is, there exists
an infinitenumber of (nonlocal) conservation laws. Of course these
conservation laws are not in involution with each other, but they are with the
Hamiltonian applying the constraint equation, H (p.q) = 0.
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Summarize

o For Lagrangians of that forms the nonlocal conservation laws are generated
by the Conformal Killing vectors of the minisuperspace.

@ The minisuperspace in scalar field cosmology has dimension two, which
means that admits infinity number of CKVs and nonlocal conservation laws.

@ The existence of a nonlocal conservation law plus the Constraint equation is
sufficient to prove the integrability.
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General Solution

In the case of a spatially flat universe, K = 0, and without matter
source, oo = 0, it has been found that [Dimakis et al. PRD (2016)]

p(w) = i? /./F/(w)dw, V(w) = %e":(“’) (1-F(w)) (5)

and

pp(w) = 75 P Py(w) = e P (2F () 1) (6)

where the spacetime is
ds” = —eF(Wdw? + &3 (de + dy? + d2?). (7)

That is analytical solution for arbitrary potential. The form of the potential fixes
the EoS and provides an first order-differential equation py (w) = ® (p¢) which
can be reduced to an algebraic equation.
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General Solution

With the presence of a perfect fluid (or curvature) the analytical solution is

1/2
/ [(F (@) = 67pm0¢"2¢) ] " dlw, (8)

where now

and the fluid components become p, = ﬁe‘F(“’) — Omo e 2%
and Py = e FlO) 2F () = 1) — (v — 1) ppng € 3¢
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Slow-Roll parameters

The potential slow-roll parameters (PSR)

Ve’ _ Vo
v=\av) VT 2w
provide with an inflationary universe when gy << 1. The condition 77, << 1 is

also important for the duration of the inflation phase.
Alternatively, more accurate parameters are the Hubble slow-roll parameters (HSR)

o __dinH _(He\* _ dinHy  Hgy
H= “\H) T T dina T TH

dina

in which

3— 2 EH 3—
€y =¢&H (3_25) oMy = 3CH77H,¢+ (3_77H> (en +1p)

€H
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Slow-Roll parameters

The HSR parameters can be expressed in terms of w, and function F (w) as

,_—/27,_—//
SH:3F/, ’7H:3%'

while for the Number of e-folds
tr 1
Ne= [ H (e de=1n 50 = 2 (wp —w),
t; aj 6

Finally for higher-order corrections we calculate
_ HpHpgpp 96

. n4 2 AW= =
iy =LA = s [(F)* = (3F2+2F") F" - 2F F"].
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Spectral Indices

From the recent data analysis by the Planck 2018 collaboration, it was found that
the value of the spectral index for the density perturbations is

ns = 0.9649 4 0.0042, while the range of the scalar spectral index is

ng = —0.005 £ 0.013. The tensor to scalar ratio, r, has been found to have a
value smaller than 0.10, i.e., r < 0.10.

The mathematical expression which relates the HSR parameters to the spectral
indices ns in the first approximation is

ns =1—dey + 21y,

while the tensor to scalar ratio is r = 10ey. Moreover, in the second
approximation the spectral index, ns, becomes

ns = 1—4ey + 2ey — 8 (ey)? (1+2C) + epnyy, (10C +6) — 2CE,
where C = yg +1In2—2 = —0.7296. Finally, the running index is given to be

n, = 2epty — 28 4.
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Reconstruct the inflationary potential

The construction of the inflaton scalar field potential from observational data is
an open problem of special interest.

@ Perturbative reconstruction approach [Lidsey et al. Rev. M.P (1997) and
references therein]

@ Stochastic perturbative approach [Easther et al. PRD (2003)]

@ Other methods [Starobinsky JETP Lett. (2005);Wohns et al JCAP
(2011);Urena-Lopez PRD (2016)]

@ Closed-form inflationary potentials by using the slow-roll parameters ¢, Ur

have been derived before [Vallinoto et al. PRD (2004);Chiba PTEP
(2015);Lin et al. MNRAS (2016)]
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Planck Collaboration

Tensor-to-Scalar Ratio (r5.002)
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Reconstruct the inflationary potential

We express the spectral indices in terms of the Hubble slow-roll parameters and
we assume that in the first-order approximation

ns—1=nh(r)

For the function h(r), we consider
e h(r) is constant, h(r) = —2ng,
@ h(r)islinear, h(r) = nir—2ngy
o h(r) is quadratic, h(r) = nyr?® + nyr — 2ng
From this, we derive second-order equations whose solutions provide us with the

explicit forms for the expansion scale-factor, the scalar-field potential, and the
effective equation of state for the scalar field
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Constant index ns

The master equation is

2_Mp_y (10)
3
o

which gives F (w) = In (Fyexp (R w) + Fy) and perfect fluid

F// + (F/)

Py = Aoy + Bp, (11)
or F(w) =In(F (w—wop)), np =0, and perfect fluid
py = 'ypg) —pgp with A =2, (12)

Recall that ng = 0 is the Harrison-Zeldovich spectrum.
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Linear function

The master equation is

F”+(1—n1)(F’)2—%F’:0, (13)

which gives
p¢:Ap$+Bp¢ CA=2—n

and scalar field potential

V(p) « <2A—|—(B—1)sinh2< 3(1+B)(A_1)¢>>><

2

>~
N

y <Sinh2 ( 3(1+L23) (/\—1)4)) _A>M
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Quadratic function

The master equation is

F" +3m (F')? +(1—ny) (F’)z—%F’:O, (14)

In the limit in which ny =1,

6p
pp=|—F—~—p,|  m=0 (15)
ny In <12p¢)
On the other hand, for ny # 0 we find that that the EoS is
16ngnp2 +1
no 0 2P¢
=2/ | ———| — , 0. 16
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Constraints

—on. € - on &
(n-)=2n, €\ 2¢, (n,-1)=2n, € 2 ¢,2n,
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Escape from Inflation

We rewrite the master equation terms of ey (w) as follows

3¢l = (no +(n—1)ey — nze%_,) €. (17)
This equation has the following critical points es_?) =0, 85_7[) =

m-lty (1 m)* +4non, for np # 0,0r ¢ ©) _ =0, (1) = 12— when ny = 0 and
n # 1. Hence in order for inflation to end in the cosmologlcal models that we

studied, the free parameters of the models have to be constraineded so that one

of the critical points, ES_, ) or SE_,), is attractor, and also that s( ) >1or s( ) > 1.
(0)

We note that point ¢;,” describes a de Sitter universe (that is, wy = —1), while
the rest of the critical points the equation of state parameter, wy, is constant.
Therefore, from the previous analysis we see that at the critical points the scalar
field potential is described by the exponential function.
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Escape from Inflation

For ny # 0, a necessary condition for an exit from the inflation to occur, is that

(£)

2
the critical points €, are real; that is, 4ngny > — a 4”1) . In the special limit in

which ng = 0, the points eg_,i) reduce to 85_(,)) and eg) = an;l In that case, the

two points are stable when ny > 0, and sg) is positive for any value of ny > 1.
However, in the general scenario with ng # 0, it follows easily that in order for
85_?) to be an elliptic point we require ng > 0. Moreover, by assuming the

condition Sg-li) > 1, we find that only the point egj) can be an attractor outside

the inflationary era and this is possible only when the free parameters satisfy the
conditions (i) mp <0, ny <142np, ng >1—ny+ ny and 4ngny > —%,
(i) p >0, np >1+4+nyand ng >1—ny+ny, or (iii) np >0, ny <1+ ny and
ng > 0. Therefore, for values of the free parameters in those ranges only the
third model, i.e. with h(r) is a quadratic function, admits an attractor outside the
inflationary era.
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The sl(3,R) algebra

The master equations

F" + (F')* - %‘JF’ =0, (18)
F”+(17n1)(F’)2—%0F’:0, (19)
F" +3m (F')’ + (1= ny) (F’)z—%F’:O, (20)

are algebraic equivalent.
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The sl(3,R) algebra

Consider the first with ng = 0, and

F(w) = (1=n)F(w), (21)
then the equation becomes

F'+(1—n)(F)=0

while the spacetime is transformed

_ 1—
ds? = — () g e (e 4 dy? 4 ) (22)

The existence of these kinds of transformations which transform the one model
into another is not a coincidence. The master equations are maximally symmetric.
In particular they are invariant under the action of one-parameter point
transformations (Lie point symmetries) which form the s/ (3, R) Lie algebra.
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sI(3,R) algebra

Famous maximally symmetric equations: The free particle y”' = 0 and the
“oscillator” y” + w (t) y = 0.

Darboux transformation is on that class of transformations.

Consider now the classical Newtonian analogue of a free particle and an observer
whose measuring instruments for time and distance are not linear. By using the
measured data of the observer we reach in the conclusion that it is not a free
particle. On the other hand, in the classical system of the harmonic oscillator an
observer with nonlinear measuring instruments can conclude that the system
observed is that of a free particle, or that of the damped oscillator or another
system. From the different observations, various models can be constructed.
However, all these different models describe the same classical system and the
master equations are invariant under the same group of point transformations but
in different parametrization.

In the master equations that we studied there is neither position nor time
variables: the independent variable is the scale factor w = 61n a, and the Hubble
function is the dependent variable, H (a). Therefore, we can say that at the level
of the first-order approximation for the spectral indices, various representations of
the variables {a, H (a)} provide different observable values for the spectral indices.
This property is violated when we consider the 2nd-order approximation.
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Thank you for your attention.
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