Outline	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications
Title				

Cosmic Inflation: From Observations to Particle Models

Cosmological Hyperfluids, Torsion and Non-metricity

Damianos Iosifidis

June 2022

Aristotle University of Thessaloniki, Greece

Damianos Iosifidis Cosmological Hyperfluids, Torsion and Non-metricity 1/23

Outline •	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications
Outli	ne			

- Non-Riemannian Geometry: Conventions/Notation
- Hyperfluids, Torsion and Non-metricity in Cosmology
- Perfect Hyperfluid: The Foundation
- Application: Friedmann Eqs with Torsion and Non-Metricity
- Conclusions/Further Prospects

The talk is based on my paper

"Cosmological Hyperfluids, Torsion and Non-metricity" Published in: Eur.Phys.J.C 80 (2020) 11, 1042 • e-Print: 2003.07384 [gr-qc] and also on

"The Perfect Hyperfluid of Metric-Affine Gravity: The Foundation" Published in: JCAP 04 (2021) 072 • e-Print: 2101.07289 [gr-qc]

Outline	Non-Riemannian Geometry	(
	00000	

The Perfect Cosmological Hyperfluid

Applications

Metric-Affine Gravity

Metric Gravity

• $\Gamma^{\alpha}_{\mu\nu} \rightarrow \textit{torsionless}$, metric compatibility $\nabla_{\sigma}g_{\mu\nu}=0$

•
$$S = S_{Gravity} + S_{Matter} = \int d^n x \sqrt{-g} \left[\mathcal{L}_G(g_{\mu\nu}) + \mathcal{L}_M(g_{\mu\nu}, \Phi) \right]$$

Teleparallel/Symmetric Teleparallel Gravity

•
$$R^{\alpha}_{\ \beta\mu\nu} = 0$$
, $\nabla_{\sigma}g_{\mu\nu} = 0$ but $S_{\mu\nu}^{\ \alpha} = \Gamma^{\alpha}_{\ [\mu\nu]} \neq 0$
• $R^{\alpha}_{\ \beta\mu\nu} = 0$, $S_{\mu\nu}^{\ \alpha} = 0$ but $Q_{\alpha\mu\nu} = -\nabla_{\alpha}g_{\mu\nu} \neq 0$

Metric-Affine Gravity (MAG)

•
$$S = \int d^n x \sqrt{-g} \left[\mathcal{L}_G(g_{\mu\nu}, \Gamma^{\alpha}_{\ \mu\nu}) + \mathcal{L}_M(g_{\mu\nu}, \Gamma^{\alpha}_{\ \mu\nu}, \Phi) \right] \Rightarrow \text{No a}$$
 priori constraints on the geometry.

Outline O	Non-Riemannian Geometry ○●○○○	Conservation Laws	The Perfect Cosmological Hyperfluid 0000	Applications

Geometrical Objects

Two distinctively different notions on a manifold

• Metric Tensor $g_{\mu\nu}$: Defines distances, lengths and dot products

$$||\alpha||^2 := \alpha^{\mu} \alpha^{\nu} g_{\mu\nu} , \ (\alpha \cdot \beta) := \alpha^{\mu} \beta^{\nu} g_{\mu\nu}$$

• Affine-Connection $\Gamma^{\lambda}_{\ \mu\nu}:$ Defines parallel transport of tensor fields on the manifold

$$\nabla_{\lambda} u^{\mu} = \partial_{\lambda} u^{\mu} + \Gamma^{\mu}_{\ \nu\lambda} u^{\nu}$$

The two need not be related a priori! Their relation may be found after solving the field equations!

Outline	Non-Riemannian	Geometry
	00000	

The Perfect Cosmological Hyperfluid

Applications

Geometrical Objects

Torsion

•
$$\nabla_{[\mu} \nabla_{\nu]} \phi = S_{\mu\nu}^{\ \lambda} \nabla_{\lambda} \phi$$
, Torsion Tensor $S_{\mu\nu}^{\ \lambda} := \Gamma^{\lambda}_{\ [\mu\nu]}$

Curvature

•
$$[\nabla_{\alpha}, \nabla_{\beta}] u^{\mu} = R^{\mu}_{\nu\alpha\beta} u^{\nu} + 2S_{\alpha\beta}^{\nu} \nabla_{\nu} u^{\mu}$$

Curvature Tensor: $R^{\mu}_{\nu\alpha\beta} := 2\partial_{[\alpha} \Gamma^{\mu}_{\ |\nu|\beta]} + 2\Gamma^{\mu}_{\ \rho[\alpha} \Gamma^{\rho}_{\ |\nu|\beta]}$

Non-Metricity

•
$$Q_{\alpha\mu\nu} := -\nabla_{\alpha}g_{\mu\nu} = -\partial_{\alpha}g_{\mu\nu} + \Gamma^{\lambda}{}_{\mu\alpha}g_{\lambda\nu} + \Gamma^{\lambda}{}_{\nu\alpha}g_{\lambda\mu}$$

Outline O	Non-Riemannian Geometry ○○○●○	Conservation Laws	The Perfect Cosmological Hyperfluid 0000	Applications

Contractions

Contractions of Riemann

- Ricci Tensor: $R_{\mu\nu} := R^{\alpha}_{\ \mu\alpha\nu}$
- Homothetic Curvature: $\widehat{R}_{\alpha\beta} := R^{\mu}_{\ \mu\alpha\beta}$
- 2nd Ricci Tensor: $\breve{R}_{\mu\nu} := R_{\mu\alpha\beta\nu}g^{\alpha\beta}$
- Ricci Scalar: $R:=R_{\mu
 u}g^{\mu
 u}=-\breve{R}_{\mu
 u}g^{\mu
 u}$

Torsion/Non-metricity related vectors

$$S_{\mu} = S_{\mu\lambda}^{\ \lambda}$$
, $ilde{S}^{\mu} = \epsilon^{\mu
u
ho\sigma}S_{
u
ho\sigma}$ (only for $n = 4$)

$$Q_\mu = g^{lphaeta} Q_{\mulphaeta} \ , \qquad ilde{Q}_\mu = g^{
holpha} Q_{
holpha\mu}$$

Outline	Non-Riemannian Geometry	Conservation Laws	The Perfect
	00000		

The Perfect Cosmological Hyperfluid

Applications

Affine Connection

Affine connection decomposition

$$\Gamma^{\lambda}{}_{\mu\nu} = \tilde{\Gamma}^{\lambda}{}_{\mu\nu} + \frac{1}{2}g^{\alpha\lambda}(Q_{\mu\nu\alpha} + Q_{\nu\alpha\mu} - Q_{\alpha\mu\nu}) - g^{\alpha\lambda}(S_{\alpha\mu\nu} + S_{\alpha\nu\mu} - S_{\mu\nu\alpha})$$

where $\tilde{\Gamma}^{\lambda}_{\mu\nu} := \frac{1}{2}g^{\alpha\lambda}(\partial_{\mu}g_{\nu\alpha} + \partial_{\nu}g_{\alpha\mu} - \partial_{\alpha}g_{\mu\nu})$ is the Levi-Civita part of the connection. Distortion: $N^{\lambda}_{\mu\nu} := \Gamma^{\lambda}_{\mu\nu} - \tilde{\Gamma}^{\lambda}_{\mu\nu}$

Decompositions

Each quantity \Rightarrow decomposed into Riemannian and non-Riemannian counterparts. Example: $R = \tilde{R} + S_{\mu\nu\alpha}S^{\mu\nu\alpha} - 2S_{\mu\nu\alpha}S^{\alpha\mu\nu} - 4S_{\mu}S^{\mu} - 4\tilde{\nabla}_{\mu}S^{\mu} + \frac{1}{4}Q_{\alpha\mu\nu}Q^{\alpha\mu\nu} - \frac{1}{2}Q_{\alpha\mu\nu}Q^{\mu\nu\alpha} - \frac{1}{4}Q_{\mu}Q^{\mu} + \frac{1}{2}Q_{\mu}\tilde{Q}^{\mu} + 2Q_{\alpha\mu\nu}S^{\alpha\mu\nu} + 2S_{\mu}(\tilde{Q}^{\mu} - Q^{\mu}) + \tilde{\nabla}_{\mu}(\tilde{Q}^{\mu} - Q^{\mu} - 4S^{\mu})$

The Perfect Cosmological Hyperfluid

Applications

Hypermomentum, Canonical and Metrical Energy Momentum Tensors

Metrical and Canonical Energy Momentum Tensor

Metrical: $T_{\alpha\beta} := -\frac{2}{\sqrt{-g}} \frac{\delta S_M}{\delta g^{\alpha\beta}}$. Canonical: $t^{\mu}_{\ c} = \frac{1}{\sqrt{-g}} \frac{\delta S_M}{\delta e_{\mu}^{\ c}}$

Hypermomentum Tensor

Hypermomentum:
$$\Delta_{\lambda}^{\mu\nu} := -\frac{2}{\sqrt{-g}} \frac{\delta S_M}{\delta \Gamma^{\lambda}_{\mu\nu}}$$

Relation Between Energy Tensors

$$t^{\mu}_{\lambda}=T^{\mu}_{\lambda}-rac{1}{2\sqrt{-g}}\hat{
abla}_{
u}(\sqrt{-g}\Delta_{\lambda}^{\mu
u}),$$

where $\hat{\nabla}_{\nu} = 2S_{\nu} - \nabla_{\nu}$.

Outline O	Non-Riemannian Geometry	Conservation Laws ○●	The Perfect Cosmological Hyperfluid	Applications

Working in exterior calculus from the GL and diff invariance we get

From GL $t^{\mu}_{\ \lambda} = T^{\mu}_{\ \lambda} - \frac{1}{2\sqrt{-g}} \hat{\nabla}_{\nu} (\sqrt{-g} \Delta_{\lambda}^{\ \mu\nu})$

From Diff

$$\frac{1}{\sqrt{-g}}\hat{\nabla}_{\mu}(\sqrt{-g}t^{\mu}{}_{\alpha}) = -\frac{1}{2}\Delta^{\lambda\mu\nu}R_{\lambda\mu\nu\alpha} + \frac{1}{2}Q_{\alpha\mu\nu}T^{\mu\nu} + 2S_{\alpha\mu\nu}t^{\mu\nu}$$

From Diff using coordinates

$$\begin{split} \sqrt{-g}(2\tilde{\nabla}_{\mu}T^{\mu}_{\ \alpha}-\Delta^{\lambda\mu\nu}R_{\lambda\mu\nu\alpha})+\hat{\nabla}_{\mu}\hat{\nabla}_{\nu}(\sqrt{-g}\Delta_{\alpha}^{\ \mu\nu})\\ +2S_{\mu\alpha}^{\ \lambda}\hat{\nabla}_{\nu}(\sqrt{-g}\Delta_{\lambda}^{\ \mu\nu})=0 \end{split}$$

The Perfect Cosmological Hyperfluid 0000

Applications

Homogeneous Cosmology with Torsion and non-metricity

- Applying Cosmological Principle to Torsion [Tsamparlis, 1979]: $S_{01}^{1} = S_{02}^{2} = S_{03}^{3} = \dots = S_{0m}^{m} \neq 0$ (no sum) $S_{iik} \propto \epsilon_{iik} \neq 0$ (only for n = 4)
- Applying it to Non-Metricity[Minkevich, 1998]: $Q_{011} = ... = Q_{0mm} \neq 0, \ Q_{110} = ... = Q_{mm0} \neq 0,$ $Q_{000} \neq 0$ Here m = n - 1=spatial space dim \implies The rest vanish!

Covariant Forms

٨

The covariant forms of the above read [D.I,2020]

•
$$S^{(n)}_{\mu\nu\alpha} = 2u_{[\mu}h_{\nu]\alpha}\Phi(t) + \epsilon_{\mu\nu\alpha\rho}u^{\rho}P(t)\delta_{n,4}$$

• $Q_{\alpha\mu\nu} = A(t)u_{\alpha}h_{\mu\nu} + B(t)h_{\alpha(\mu}u_{\nu)} + C(t)u_{\alpha}u_{\mu}u_{\nu}, \quad \forall n$
 $N^{(n)}_{\alpha\mu\nu} = X(t)u_{\alpha}h_{\mu\nu} + Y(t)u_{\mu}h_{\alpha\nu} + Z(t)u_{\nu}h_{\alpha\mu} + V(t)u_{\alpha}u_{\mu}u_{\nu} + \epsilon_{\alpha\mu\nu\lambda}u^{\lambda}W(t)\delta_{n,4}$ for the distortion.

The Perfect Cosmological Hyperfluid 0000

Applications

Isotropic Hypermomentum

Imposing Cosm. Principle to Hypermomentum($\mathcal{L}_{\mathcal{F}^i}\Delta_{\alpha\mu\nu}=0$) $\Delta_{i00} = \Delta_{0i0} = \Delta_{00i} = 0$ $\Delta_{110} = ... = \Delta_{mm0}$, $\Delta_{011} = ... = \Delta_{0mm}$ (no sum)

Covariant Form of Hypermomentum

Using an 1 + (n - 1) split we get the covariant form [D.I,2020]:

•
$$\Delta^{(n)}_{\alpha\mu\nu} = \phi h_{\mu\alpha} u_{\nu} + \chi h_{\nu\alpha} u_{\mu} + \psi u_{\alpha} h_{\mu\nu} + \omega u_{\alpha} u_{\mu} u_{\nu} + \delta_{n,4} \epsilon_{\alpha\mu\nu\kappa} u^{\kappa} \zeta$$

Most General form of Hypermomentum respecting isotropy!

Comments

- **1** In an FLRW ϕ, χ, \dots depend only on time t. If homogeneity is relaxed $\phi = \phi(t, x^i)$ etc. (more about it later)
- O Hypermomentum generally contributes 5 dof in a Cosmological setting (n = 4). (and 4 dof for $n \neq 4$).

Outline O	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid ○○●○	Applications

Hypermomentum Decomposition (Matter with Microstructure)

• Spin Part:
$$\Delta_{[\alpha\mu]\nu} = (\psi - \chi) u_{[\alpha} h_{\mu]\nu} + \delta_{n,4} \epsilon_{\alpha\mu\nu\kappa} u^{\kappa} \zeta$$

• Dilation Part:
$$\Delta_{\nu} := \Delta_{\alpha\mu\nu} g^{\alpha\mu} = \left[(n-1)\phi - \omega \right] u_{\nu}$$

• Shear Part:
$$\check{\Delta}_{\alpha\mu\nu} = \Delta_{(\alpha\mu)\nu} - \frac{1}{n}g_{\alpha\mu}\Delta_{\nu} = \frac{(\phi+\omega)}{n} \Big[h_{\alpha\mu} + (n-1)u_{\alpha}u_{\mu}\Big]u_{\nu} + (\psi+\chi)u_{(\mu}h_{\alpha)\mu}$$

Sourcing Torsion and Non-Metricity (5 = 2 + 3)

By means of the connection field eqs, the above parts act as sources producing spacetime torsion and non-metricity (see example later).

The Perfect Cosmological Hyperfluid 0000

Applications

The Perfect (Ideal) Hyperfluid [D.I, 2020]

Energy Momentum:

$$T_{\mu\nu} = t_{\mu\nu} = \rho u_{\mu} u_{\nu} + \rho h_{\mu\nu}$$

Hypermomentum :
$$\Delta^{(n)}_{\alpha\mu\nu} = \phi h_{\mu\alpha} u_{\nu} + \chi h_{\nu\alpha} u_{\mu} + \psi u_{\alpha} h_{\mu\nu} + \omega u_{\alpha} u_{\mu} u_{\nu} + \delta_{n,4} \epsilon_{\alpha\mu\nu\kappa} u^{\kappa} Q^{\kappa}$$

Conservation laws (obtained from diff invariance)

$$\tilde{\nabla}_{\mu}T^{\mu}_{\ \nu} = \frac{1}{2}\Delta^{\alpha\beta\gamma}R_{\alpha\beta\gamma\nu}. \quad \hat{\nabla}_{\nu}\left(\sqrt{-g}\Delta_{\lambda}^{\ \mu\nu}\right) = 0$$

We call it hypermomentum preserving.

Note

The conservation law for hypermomentum (2nd eq. above) in an FLRW Universe really contains 2 independent eqs for the 5 fields. \Rightarrow 3 eqs of state must be provided.

Outline	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications
				•000000000

Simple Example:

Consider the Metric-Affine Theory $S = \frac{1}{2\kappa} \int d^n x \sqrt{-g} R(g, \Gamma) + S_M[g_{\mu\nu}, \Gamma^{\lambda}_{\mu\nu}, \Psi]$ where S_M is Perfect Hyperfluid Matter.

• g-variation:
$$R_{(\mu\nu)} - \frac{1}{2}Rg_{\mu\nu} = \kappa T_{\mu\nu}$$

•
$$\Gamma$$
-variation: $-\frac{\nabla_{\lambda}(\sqrt{-g}g^{\mu\nu})}{\sqrt{-g}} + \frac{\nabla_{\sigma}(\sqrt{-g}g^{\mu\sigma})\delta_{\lambda}^{\nu}}{\sqrt{-g}} + 2(S_{\lambda}g^{\mu\nu} - S^{\mu}\delta_{\lambda}^{\nu} + g^{\mu\sigma}S_{\sigma\lambda}^{\nu}) = \kappa\Delta_{\lambda}^{\mu\nu}$

Homogeneous Cosmology

Consider a flat FLRW background with the usual line element $ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j \Rightarrow$ Get modified Friedmann eqs in the presence torsion and non-metricity (induced by Hypermomentum).

Outline	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications
				000000000

Connecting them to their sources

Using the connection field eqs we can express the torsion and non-metricity functions in terms of their sources (hypermomentum components)

$$A = \kappa (\phi - \chi - \psi) , \quad B = -2\kappa \phi , \quad C = -\kappa \omega$$
$$= \kappa \begin{bmatrix} 1 & ((p - 1))(1 + (p - 2))) & 2\phi \end{bmatrix} = B = 0$$

$$\Phi = \frac{\kappa}{4} \left[\frac{1}{(n-2)} \left((n-1)\psi + (n-3)\chi \right) - 2\phi \right] \quad , \quad P = -\frac{\kappa}{2}\zeta$$

Note

This is most easily achieved by first writing

$$N^{(n)}_{\alpha\mu\nu} = X(t)u_{\alpha}h_{\mu\nu} + Y(t)u_{\mu}h_{\alpha\nu} + Z(t)u_{\nu}h_{\alpha\mu} + V(t)u_{\alpha}u_{\mu}u_{\nu} + \epsilon_{\alpha\mu\nu\lambda}u^{\lambda}W(t)\delta_{n,4}$$

relate X, Y, ... to $\phi, \chi, ...$ then use $Q_{\nu\alpha\mu} = 2N_{(\alpha\mu)\nu}$, $S_{\mu\nu\alpha} = N_{\alpha[\mu\nu]}$

The Perfect Cosmological Hyperfluid

Applications

Friedmann Eqs with Torsion and Non-metricity

$$H^{2} = \frac{2\kappa}{(n-1)(n-2)}\rho + \frac{2}{(n-2)}P^{2}\delta_{n,4}$$
$$-\frac{H}{(n-2)}[(n-1)X - (n-3)Y + A + C]$$
$$-\frac{1}{(n-2)}(\dot{X} + \dot{Y}) - \frac{1}{2(n-2)}(X - Y)(A + C) + XY$$

$$\frac{\ddot{a}}{a} = -\frac{\kappa}{(n-1)(n-2)} \Big[(n-3)\rho + (n-1)p \Big]$$
$$+ \dot{Y} + H\Big(Y + \frac{A}{2} + \frac{C}{2}\Big) - \frac{Y}{2}(A+C)$$

where $Y = 2\Phi + \frac{A}{2}$, $X = \frac{B}{2} - 2\Phi - \frac{A}{2}$.

Outline O	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications

The previous Friedmann eqs are subject to the conservation Laws of the Perfect Cosmological Hyperfluid (PCH):

•
$$\dot{\rho} + (n-1)H(\rho+p) = -\frac{1}{2}u^{\mu}u^{\nu}(\chi R_{\mu\nu} + \psi \breve{R}_{\mu\nu})$$

• $-\delta^{\mu}_{\lambda}\frac{\partial_{\nu}(\sqrt{-g}\phi u^{\nu})}{\sqrt{-g}} - u^{\mu}u_{\lambda}\frac{\partial_{\nu}\left(\sqrt{-g}(\phi+\chi+\psi+\omega)u^{\nu}\right)}{\sqrt{-g}}$
 $+\left[\left(2S_{\lambda}+\frac{Q_{\lambda}}{2}\right)u^{\mu}-\nabla_{\lambda}u^{\mu}\right]\chi + \left[\left(2S^{\mu}+\frac{Q^{\mu}}{2}-\tilde{Q}^{\mu}\right)u_{\lambda}-g^{\mu\nu}\nabla_{\nu}u_{\lambda}\right]\psi$
 $+u^{\mu}u_{\lambda}(\dot{\chi}+\dot{\psi}) - (\phi+\chi+\psi+\omega)(\dot{u}^{\mu}u_{\lambda}+u^{\mu}\dot{u}_{\lambda}) = 0$

Outline	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Application
				00000000

Pure Shear

Considering a pure shear hyperfluid (i.e. setting spin and dilation to zero) we have $\Phi = \frac{\kappa}{2}(\psi - \phi)$, $\zeta = 0$, $C = \frac{(n-1)}{2}B = -\kappa(n-1)\phi$, $A = \kappa(\phi - 2\psi)$ and the conservation laws become

$$\dot{\phi} + \left((n-1)+2w_1\right)H\phi = 0$$

$$\dot{\rho} + (n-1)H(\rho + p) = 0$$

where we have assumed a shear 'equation of state' $\psi = w_1 \phi$ with w_1 being a constant which we may refer to as the 'shear' barotropic index.

Note

The continuity equation completely decouples from the hypermomentum dof and has its usual form. This is not always true and is a particular feature of the **pure shear case**.

Damianos losifidis

Cosmological Hyperfluids, Torsion and Non-metricity18/23

Outline O	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications

Friedmann Equations

After some algebra and upon using the conservation laws we finally obtain the simple expressions (also setting n = 4):

$$H^2 = \frac{\kappa}{3}\rho + \frac{\kappa^2 \phi^2}{4}$$

$$\frac{\ddot{a}}{a} = -\frac{\kappa}{6}(\rho + 3p) - \frac{\kappa^2 \phi^2}{2}(1 + w_1)$$

- For $w_1 > -1$ shear hypermomentum slows down expansion
- For $w_1 < -1$ it accelerates the expansion and
- For $w_1 = -1$ has no effect on the acceleration

Outline	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications
				00000000000

"Dusty Shear"

For $w_1 = 0$ from the conservation law of ϕ it follows that

$$\phi = \phi_0 \left(\frac{a_0}{a}\right)^3 = \frac{\lambda_0}{a^3}$$

and the Friedmann equations become $H^{2} = \frac{\kappa}{3}\rho + \frac{\kappa^{2}\lambda_{0}^{2}}{4}\frac{1}{a^{6}}$ $\frac{\ddot{a}}{a} = -\frac{\kappa}{6}(\rho + 3p) - \frac{\kappa^{2}\lambda_{0}^{2}}{2}\frac{1}{a^{6}}$

Connection with stiff-matter

We see that the effect of the pure shear hyperfluid is indistinguishable from that of stiff matter.

• Stiff matter may not be so exotic and can be seen as a specific degree of freedom of the perfect hyperfluid!

The Perfect Cosmological Hyperfluid

Applications

<u>Generalization</u>: There exists a Perfect Hyperfluid, generalizing the Perfect Fluid notion of GR, for which: (D.I. 2021, JCAP)

$$t_{\mu
u} = \tilde{
ho} u_{\mu} u_{
u} + \tilde{
ho} h_{\mu
u} \ , \ T_{\mu
u} =
ho u_{\mu} u_{
u} +
ho h_{\mu
u}$$

 $\Delta^{(n)}_{\alpha\mu\nu} = \phi h_{\mu\alpha} u_{\nu} + \chi h_{\nu\alpha} u_{\mu} + \psi u_{\alpha} h_{\mu\nu} + \omega u_{\alpha} u_{\mu} u_{\nu} + \delta_{n,4} \epsilon_{\alpha\mu\nu\kappa} u^{\kappa} \zeta$

These sources are subject to the conservation laws:

$$egin{aligned} & ilde{
abla}_{\mu}t^{\mu}_{lpha} &= rac{1}{2}\Delta^{\lambda\mu
u}R_{\lambda\mu
ulpha} + rac{1}{2}Q_{lpha\mu
u}(t^{\mu
u} - T^{\mu
u}) \ &t^{\mu}_{\lambda} &= T^{\mu}_{\lambda} - rac{1}{2\sqrt{-g}}\hat{
abla}_{
u}(\sqrt{-g}\Delta_{\lambda}^{\mu
u}) \end{aligned}$$

Remark

The Perfect Hyperfluid is a direct generalization of the Perfect Fluid description where now the microscopic characteristics of matter are also taken into account.

Damianos Iosifidis

Cosmological Hyperfluids, Torsion and Non-metricity21/23

Outline O	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications 00000000●0

Conclusions/Further Prospects

- We have constructed the Perfect Cosmological Hyperfluid
- It can be further generalized by dropping the homogeneity assumption (Perfect Hyperfluid=Generalization of Perfect Fluid by taking into account the microstructure)
- The results apply also to Teleparallel Gravity (apart from MAG)
- Cosmological Solutions?
- Non-relativistic limit of hyperfluid?
- Connection to observations and bounds on hypermomentum variables?

Outline O	Non-Riemannian Geometry	Conservation Laws	The Perfect Cosmological Hyperfluid	Applications 000000000●

...Thank you!!!