Maria Giovanna Dainotti

SNe Ia, the Gaussianity assumption and their use together with other high-z cosmological probes

06/05/2024, Thessaloniki

The Hubble constant and its tension

, $R(t_0) = \text{SCALE FACTOR COMPUTED IN THE PRESENT } (t_0)$

 $H_0 \stackrel{\text{\tiny def}}{=} \frac{R'(t_0)}{R(t_0)}$

M. G. Dainotti, et al., 2021, ApJ, 912, 150.

 H_0 TENSION possibly due to its evolution or evolution of its parameters and its theoretical explanations

2

 $v = H_0 \cdot D$

HUBBLE'S LAW

M. G. Dainotti, et al., 2021, ApJ, 912, 150.

Dainotti et al. 2023, Galaxies, vol. 10, issue 1, 24.

Schiavove, Montani, Bompacigno, MNRASL

Montani, Carlevaro, Dainotti, PDU, 44, May 2024, 101486

The observed distance moduli of SNe Ia can be expressed through the modified Tripp formula (Scolnic et al. 2018):

Peak magnitude (B-band)

M is the absolute magnitude of a reference SN (in B band) with stretch = 0 and color = 0

M is degenerate with H0, see talk of Leandros

Theory vs. Data

FOR EACH BIN OF SUPERNOVAE Ia, A χ^2 TEST IS PERFORMED IN ORDER TO FIND THE BEST VALUE FOR H₀

 $\mu_{obs}^{(SN)} = m_B - M + \alpha x_1 - \beta c + \Delta M + \Delta B$

$$\mu_{th}^{(SN)}(z, H_0, \dots) = 5 * \log_{10} \left(\frac{d_L(z, H_0, \dots)}{10pc} \right) + 25$$

Δ

$$\chi^2 = \sum_{i} \frac{(\mu_{obs}^i - \mu_{th}^i)^2}{\varepsilon_{\mu obs}^i}$$

THIS IS THE GENERALIZATION WITH THE COVARIANCE MATRIX C, WHICH INCLUDES STATISTICAL UNCERTAINTIES (DIAGONAL PART) AND SYSTEMATIC CONTRIBUTIONS (OFF-DIAGONAL)

$$\chi^2_{SNe} = \Delta \mu^T C^{-1} \Delta \mu$$

$$\Delta \mu = \mu_{obs}^{(SN)} - \mu_{th}^{(SN)}$$

The BAO contribution

$$\chi^2 = \chi^2_{SNe} + \chi^2_{BAOs}$$

$$\chi^2_{BAO} = \Delta d^T \cdot \mathcal{M}^{-1} \cdot \Delta d \qquad \Delta d = d_z^{obs}(z_i) - d_z^{theo}(z_i)$$

Rs= sound horizon

Degeneracy between rs Ho and E(z), For more details see talk of Leandros

$$D_V(z) = \left[\frac{czd_L^2(z)}{(1+z)^2H(z)}\right]^{1/3}, \qquad d_z(z) = \frac{r_s(z_d)}{D_V(z)}.$$

5

COSMOLOGICAL MODELS Adopted

The cosmological models

$$d_L(z, H_0, ...) = c(1+z) \int_0^{z'} \frac{dz'}{H(z')}$$

Our work on the Hubble constant tension

We divide the <u>**Pantheon sample**</u> (1048 SNe Ia with 0 < z < 2.26, Scolnic et al. 2018) in 3 and 4 bins ordered in redshift + 1 Baryon Acoustic Oscillations

EACH H₀ IS ESTIMATED IN ONE BIN

7

After we obtain several Ho values, we fit those with

$$g(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

 $\alpha = \text{evolution parameter}$ $\widetilde{H}_0 = H_0(z = 0)$

Criteria for the selection of bins

- Scolnic et al. (2018) suggest that it is important to have a number of SNe per bin in the hundreds so that the systematic uncertainties effect is properly taken into account

- 3 bins -> closure of contours in the parameter space and each bin contours is compatible in 1 σ with the total Pantheon
- 4 bins -> comparison with Kazantzidis & Perivolaropoulos (2020a)
- 20, 40 bins -> to test the independence of the results on the binning choice

On the Hubble constant tension in the SNe Ia Pantheon sample

Pantheon sample bins cosmology

THE ANALYSIS PERFORMED IS THE χ^2 REDUCTION FOLLOWED BY THE MARKOV CHAIN MONTE-CARLO WITH THE D'AGOSTINI METHOD IN ORDER TO ESTIMATE THE PARAMETERS AND TO OBTAIN CONTOURS AT 1σ and 2σ confidence levels

 $\chi^{2} = \Delta \mu^{T} C^{-1} \Delta \mu \qquad \text{WHERE} \qquad \Delta \mu = \mu_{obs}^{(SN)} - \mu_{th} \qquad \text{AND} \qquad C = D_{stat} + C_{sys} \qquad \text{BC}_{sys} \qquad UN$

THE FULL COVARIANCE MATRIX THAT INCLUDES BOTH STATISTICAL AND SYSTEMATIC UNCERTAINTIES

FIRST OF ALL WE MUST DISCUSS THE SELECTION CRITERIA FOR THE BINS. IN SCOLNIC 2018 IT IS SUGGESTED TO MAINTAIN THE BINS IN THE ORDER OF THE HUNDREDS OF SNE SO THAT THE SYSTEMATIC EFFECTS CAN BE PROPERLY HIGHLIGHTED

WE DECIDED TO EXPLORE THE FIRST Two CHOICES IN BINS: 3 BINS, 4 BINS

Results for Λ CDM and wowaCDM model (3, 4 bins)

The $w_0 w_a CDM$ model results are compatible with the ΛCDM ones

<u>10</u>

The evolution of the Ho is similar to the evolution of the MB parameter (L. Kazantzidis and L. Perivolaropoulos Phys. Rev. D **102**, 023520)

M. G. Dainotti, et al., 2021, ApJ, 912, 150

Results for ACDM and w0waCDM models (20, 40 bins)

M. G. Dainotti *et al* 2021, *ApJ*, **912,** 150

Extrapolation at z=1100Results for Λ CDM model (3, 4 20, 40 bins)

<u>12</u>

	F	lat ΛCDM Mod	lel, Fi	xed Ω_{0m} , with Full	Covariance Subma	trices C	
Bins	$ ilde{H}_0 \ \left({ m km~s^{-1}~Mpc^{-1}} ight)$	α	$\frac{\alpha}{\sigma_{\alpha}}$	M	$H_0 (z = 11.09)$ (km s ⁻¹ Mpc ⁻¹)	$\frac{H_0 (z = 1100)}{(\text{km s}^{-1} \text{Mpc}^{-1})}$	% Tension Reduction
3	73.577 ± 0.106	0.009 ± 0.004	2.0	-19.245 ± 0.006	72.000 ± 0.805	69.219 ± 2.159	54%
4	73.493 ± 0.144	0.008 ± 0.006	1.5	-19.246 ± 0.008	71.962 ± 1.049	69.271 ± 2.815	66%
20	73.222 ± 0.262	0.014 ± 0.010	1.3	-19.262 ± 0.014	70.712 ± 1.851	66.386 ± 4.843	68%
40	73.669 ± 0.223	0.016 ± 0.009	1.8	-19.250 ± 0.021	70.778 ± 1.609	65.830 ± 4.170	57%

M. G. Dainotti, et al., 2021, ApJ, 912, 150

Extrapolating H_0 at the redshift of the Last Scattering Surface (z = 1100) we obtained a value of H_0 compatible in 1 σ with the H_0 CMB measurement.

By accounting for this evolution, we have 1.88 sigma tension < 2 sigma

w0waCDM model results (3, 4 20, 40 bins) 13

Calibrating the *M* value of μ_{obs} such that locally (namely, in the first bin) $H_0 = 73.5 \ km/s/Mpc$

Values compatible in 1 σ with the Planck CMB value

Flat $w_0 w_a \text{CDM}$ Model, Fixed Ω_{0m} , with Full Covariance Submatrices \mathcal{C}									
Bins \tilde{H}_0 α		$\frac{\alpha}{\sigma_{\alpha}}$	M	$H_0 (z = 11.09)$	$H_0 (z = 1100)$	% Tension			
	$({\rm km~s^{-1}Mpc^{-1}})$				$(\mathrm{km~s^{-1}~Mpc^{-1}})$	$\left(\mathrm{km~s^{-1}~Mpc^{-1}}\right)$	Reduction		
3	73.576 ± 0.105	0.008 ± 0.004	1.9	-19.244 ± 0.005	72.104 ± 0.766	69.516 ± 2.060	55%		
4	73.513 ± 0.142	0.008 ± 0.006	1.2	-19.246 ± 0.004	71.975 ± 1.020	69.272 ± 2.737	65%		
20	73.192 ± 0.265	0.013 ± 0.011	1.9	-19.262 ± 0.018	70.852 ± 1.937	66.804 ± 5.093	72%		
40	73.678 ± 0.223	0.015 ± 0.009	1.7	-19.250 ± 0.022	70.887 ± 1.595	66.103 ± 4.148	59%		

$$x_{i} = \frac{H_{0}^{(Cepheids)}(z \sim 0) - H_{0}^{(CMB)}(z \sim 1100)}{\sqrt{\sigma_{H_{0}^{(Cepheids)}(z \sim 0)}^{2} + \sigma_{H_{0}^{(CMB)}(z \sim 1100)}^{2}}} \qquad x_{f} = \frac{\tilde{H}_{0}(z = 0) - H_{0}(z = 1100)}{\sqrt{\sigma_{\tilde{H}_{0}(z = 0)}^{2} + \sigma_{H_{0}^{2}(z = 1100)}^{2}}} \qquad \% \text{Diff} = 1 - x_{f}/x_{i}$$

On the Hubble constant tension in the SNe Ia Pantheon sample

M. G. Dainotti, et al., 2021, ApJ, 912, 150

The trend of the alpha parameter

14

M. G. Dainotti, et al., 2021, ApJ, 912, 150

4 bins, ACDM model, comparison

4 BINS (262 SNe PER BIN), LIKE KAZANTZIDIS & PERIVOLAROPOULOS 2020a Phys. Rev. D 102, 023520

OUR FIRST BIN

OUR VALUES: BLUE BARS, K&P VALUES: RED BARS

The advantage of our approach is that we use the full covariance matrix

Testing the Hu-Sawicki model

Testing the Hu & Sawicki (2007) model with n = 1

$$f(R) = R + F(R) = R - m^2 \frac{c_1 \left(\frac{R}{m^2} \right)^n}{c_2 \left(\frac{R}{m^2} \right)^n + 1}$$

In the case of $F_{R0} = -10^{-7}$ (value of the field at the present time)

Despite adopting this modified gravity model, such a decreasing trend is still visible

M. G. Dainotti, et al., 2021, ApJ, 912, 150

<u>16</u>

Continuing with BAOs $H_0(z)$ fitting (3 bins ΛCDM) + BAOs

$\frac{\eta}{\tau}$
v_{η}
2.0
$\frac{\eta}{\sigma_{\eta}}$
1.2

17

M.G. Dainotti, et al., 2022, Galaxies, 10, 1, 24

M.G. Dainotti, et al., 2022, Galaxies, 10, 1, 24

Varying H_0 and Ω_{0m}

$H_0(z)$ fitting (3 bins $w_0 w_a CDM$) + BAOs

Varying H_0 and w_a

Flat $w_0 w_a \text{CDM}$ model, with	out BAOs, varying H_0 and w_0	a
\mathcal{H}_0	η	$\frac{\eta}{\sigma_{\eta}}$
69.847 ± 0.119	0.034 ± 0.006	5.7
at w ₀ w _a CDM model, includ	ling BAOs, varying H ₀ and u	^y a
\mathcal{H}_0	η	$\frac{\eta}{\sigma_{\eta}}$
69.821 ± 0.126	0.033 ± 0.005	5.8
	Hat $w_0 w_a$ CDM model, with \mathcal{H}_0 69.847 \pm 0.119 Mat $w_0 w_a$ CDM model, includ \mathcal{H}_0 69.821 \pm 0.126	Flat $w_0 w_a \text{CDM}$ model, without BAOs, varying H_0 and w_a \mathcal{H}_0 η 69.847 ± 0.119 0.034 ± 0.006 Lat $w_0 w_a \text{CDM}$ model, including BAOs, varying H_0 and w_a \mathcal{H}_0 η 69.821 ± 0.126 0.033 ± 0.005

<u>18</u>

M.G. Dainotti, et al., 2022, Galaxies, 10, 1, 24

M.G. Dainotti, et al., 2022, Galaxies, 10, 1, 24

FURTHER CONSIDERATIONS

In this case, the parameter space has been enlarged up to 2-dimensions.

1) In order to have a reliable statistical representation of the Pantheon sample, we focus our analysis on the case of 3 bins, ignoring the subsequent divisions of the Pantheon sample to avoid statistical fluctuations to dominate.

2) In the current analysis, it is important to consider the following constraint in the w_0w_aCDM case,

$$w(z) > -1$$
 where $w(z) = w_0 + w_a * \frac{z}{1+z}$ is the CPL parametrization

However, also phantom models with w<-1 can be considered

Discussion of the results

SNe la ANALYSIS: POSSIBLE ASTROPHYSICAL EFFECTS

POSSIBLE EVOLUTIONARY EFFECTS ON THE OBSERVABLES LIKE COLOR, STRETCH AND MASS CORRECTION OR STATISTICAL FLUCTUATIONS OR EVEN HIDDEN BIASES

- NICOLAS ET AL. 2021 SHOWED THAT THE STRETCH FACTOR EVOLVES WITH REDSHIFT AND THIS MAY EXPLAIN OUR OBSERVED TREND.
- <u>NEW DATA ARE NEEDED TO FURTHER EXPLORE OUR</u> <u>RESULTS (E.G. PANTHEON+)</u>
- Wojtak et al. 2023, MNRAS, 525, 4 → 2 populations
 regarding the stretch and a clear trend of Hubble residuals
 increasing with the colour parameter.

N. Nicolas, et al., 2021, A&A, 649, A74

Discussion of the results

<u>21</u>

Ne la ANALYSIS: POSSIBLE THEORETICAL MODELING

THIS RESULTS CAN BE EXPLAINED THANKS TO DIFFERENT THEORETICAL FRAMEWORKS

IF NOT DUE TO ASTROPHYSICAL BIASES OR SELECTION EFFECTS

- MODIFIED GRAVITY SCENARIO, G = G(z) -> IN MODIFIED THEORIES THERE IS A VARIATION OF THE G CONSTANT (ex. f(R) THEORIES, HU-SAWICKI MODEL)

 ➤ THE HU-SAWICKI MODEL WITH VARYING Ω_{0m} HAS BEEN ANALYZED BUT THE HUBBLE CONSTANT DECREASING TREND WAS PROVEN TO HOLD ANYWAY
 ➤ New Theories are needed: slow rolling?

Slow-rolling scalar dynamics to alleviate the Hubble tension

- <u>22</u>
- Minimally coupled with Gravity scalar field, slow-rolling (denoted with sr) dynamics yields:

$$H_{\rm sr}(z) = \mathcal{H}_0(z) \ \sqrt{\Omega_{0m}^{\rm SN}(1+z)^3 + (1-\Omega_{0m}^{\rm SN})} \qquad \mathcal{H}_0(z) = H_{0\rm P} \sqrt{\frac{\Omega_{0m}^{\rm P}(1+z)^3 + (1-\Omega_{0m}^{\rm P}) + \Omega_{0\phi}(1+z)^{-3\beta}}{\Omega_{0m}^{\rm SN}(1+z)^3 + (1-\Omega_{0m}^{\rm SN})}} H_{0\rm P} = 67.4 \qquad \Omega_{0m}^{\rm P} = 0.315 \\ H_{0\rm SN} = 73.5 \qquad \Omega_{0m}^{\rm SN} = 0.298}$$

- P=Planck;PL=power law. The quantity $\Omega_{0\phi}$ is set in order to have $H_{sr}(0) = \mathcal{H}_0(0) = 73.5 \Rightarrow \Omega_{0\phi} = 0.189$
- Parameter β is determined by the fitting procedure of $\mathcal{H}_0(z)$ with the 40 bins distribution of the H_0 values in Dainotti et al. 2021, ApJ, 912, 150. $\beta = -0.285 \pm 0.026$

Montani, Carlevaro, Dainotti, PDU, 44, May 2024,

Are you ready to look at the tension from another perspective?

We strive to reach precision cosmology

BUT

What about the assumptions of the likelihood?

Common assumption: Gaussian likelihood of the SNe Ia, BAO, Quasars and GRBs.

24

Are all this valid?

NO! SNe Ia, BAO and QSOs do not fulfill. Only GRBs fulfil the Gaussianity assumptions the Gaussian likelihoods. Starting with SNe Ia

25

Figure 1: Normalized $\Delta \mu_{norm}$ histogram, defined as $\Delta \mu_{norm} = C^{-1/2} \Delta \mu$, for the 1048 SNe Ia in *Pantheon* (left panel) and the 1701 SNe Ia in *Pantheon* + (middle panel). The green curve is the best-fit Gaussian distribution, while the orange curves are the best-fit logistic (left panel) and Student's t (middle panel) distributions. Right panel shows the superimposition of the *Pantheon* and *Pantheon* + distributions. In all panels the vertical black line marks the zero line.

Dainotti, M.G., Bargiacchi, G., Bogdan M., Capozziello, S. and Nagataki S, "*Reduced uncertainties up to 43% on the Hubble constant and the matter density with the SNe Ia with a new statistical analysis*", JHEAP, 41, 30-41.

26

Let's define the Logistic and the Tstudent

PDF_{logistic} =
$$\frac{e^{-\frac{(x-\hat{x})}{s}}}{s\left(1+e^{\frac{-(x-\hat{x})}{s}}\right)^2}$$

s is scale and the variance $\sigma^2 = (s^2 \pi^2)/3$

 $\sigma\mu$, of the logistic with $x^{2} = -0.004$ and s = 0.08 (orange) and the Gaussian with $x^{2} = 0.0007$ and $\sigma = 0.14$ (green)

Γ is the gamma function, ν are the degrees of freedom, and $σ^2 = (s^2 ν)/(ν - 2)$

 $PDF_{student} = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} s \Gamma\left(\frac{\nu}{2}\right)} \left[1 + \frac{((x-\hat{x})/s)^2}{\nu}\right]^{-\frac{\nu+1}{2}}$

The variance of the relation weights more than the number of sources used

The two different Cosmological analysis

Figure 2: Fit of the flat Λ CDM model with Ω_M and H_0 free parameters. Left panel shows the results for *Pantheon* SNe Ia with both \mathcal{L}_{Gauss} and $\mathcal{L}_{logistic}$ as in the legend. Right panel shows the contours for the *Pantheon* + sample with both \mathcal{L}_{Gauss} and $\mathcal{L}_{Student}$ as illustrated in the legend.

28

Results on Ω_M and H_0 within a flat Λ CDM model

Both Ω_M and H0 are free parameters,

- The Llogistic for the Pantheon
- LStudent for the Pantheon +
- significantly reduce the uncertainties on both parameters.
- L*logistic* on Ω_M by 43% (from 0.021 to 0.012) and 41% (from 0.34 to 0.20) for H₀, respectively,
- LStudent by 42% (from 0.019 to 0.011) for Ω_M and 33% (from 0.24 to 0.16) for HO.

Are you ready to look at the tension with high-z probes?

GRB cosmology:

What are the solutions to allow for an independent calibration?

Simultaneous fitting: fit simultaneously the correlation parameters and the parameters of a cosmological model of interest from GRB observations.

Calibration with low-redshift probes (e.g., Cosmic Chronometers), given that objects at the same redshift should have the same luminosity distance regardless of the underlying cosmology

Let's start with the contemporaneous fitting

Combining GRBs + SNe Ia + BAO

SNe Ia + BAO³¹ "The Gamma-ray Bursts fundamental plane correlation as a cosmologic tool",Dainotti M.G. et al. 2023, MNRAS, 518, 2.

compatibility with standard cosmological model

Simultaneous fitting

0.54

0.52

2

32

What else can we do?

Results for the Flat and non-flat models

Dainotti et al. 2023, ... Nagataki, B. Zhang, N. Fraija, ApJS, 2023arXiv230510030, press release from NAOJ

$\mathcal{L}_{\mathcal{G}}$ likelihoods:		Non-fla	t ΛCDM	flat wCDM				
GRBs+QSOs+BAO+Pantheon	H_0	Ω_M	Ω_k	H_0	Ω_M	w		
No Evolution	69.98 ± 0.32	0.310 ± 0.010	-0.018 ± 0.025	69.90 ± 0.40	0.312 ± 0.010	-1.012 ± 0.038		
Fixed Evolution	70.20 ± 0.33	0.297 ± 0.009	-0.027 ± 0.025	70.45 ± 0.37	0.295 ± 0.009	-1.058 ± 0.035		
Varying Evolution	70.10 ± 0.30	0.304 ± 0.010	-0.024 ± 0.024	70.12 ± 0.38	0.306 ± 0.010	-1.031 ± 0.036		
GRBs+QSOs+BAO+Pantheon +	H_0	Ω_M	Ω_k	H_0	Ω_M	w		
No Evolution	72.94 ± 0.23	0.366 ± 0.011	-0.023 ± 0.021	72.80 ± 0.24	0.371 ± 0.010	-1.011 ± 0.030		
Fixed Evolution	73.02 ± 0.23	0.354 ± 0.010	-0.021 ± 0.021	73.07 ± 0.25	0.354 ± 0.010	-1.035 ± 0.029		
Varying Evolution	72.94 ± 0.24	0.362 ± 0.011	-0.021 ± 0.022	72.91 ± 0.25	0.364 ± 0.010	-1.020 ± 0.030		
	Non-flat ACDM			flat wCDM				
The \mathcal{L}_N likelihoods:		Non-fla	It ACDM		flat wCDN	1		
$\frac{1}{\text{GRBs+QSOs+BAO+Pantheon}}$	H_0	Ω_M	Ω_k	H_0	Ω_M	1w		
GRBs+QSOs+BAO+Pantheon No Evolution	H_0 70.34 ± 0.23	$\frac{\Omega_M}{0.299 \pm 0.008}$	$\frac{\Omega_k}{-0.040 \pm 0.022}$	$\frac{H_0}{70.31 \pm 0.24}$	$\frac{\Omega_M}{0.300 \pm 0.008}$	$\frac{1}{w}$ -1.043 ± 0.028		
The L _N likelihoods: GRBs+QSOs+BAO+Pantheon No Evolution Fixed Evolution	H_0 70.34 ± 0.23 70.37 ± 0.22	Non-fla Ω_M 0.299 ± 0.008 0.287 ± 0.007	$ \frac{\Omega_k}{-0.040 \pm 0.022} \\ -0.027 \pm 0.017 $	$\frac{H_0}{70.31 \pm 0.24}$ 70.47 ± 0.24	flat wCDM Ω_M 0.300 ± 0.008 0.289 ± 0.007	$\frac{w}{-1.043 \pm 0.028} \\ -1.046 \pm 0.024$		
The L _N likelihoods: GRBs+QSOs+BAO+Pantheon No Evolution Fixed Evolution Varying Evolution	H_0 70.34 ± 0.23 70.37 ± 0.22 70.33 ± 0.23	Non-fla Ω_M 0.299 ± 0.008 0.287 ± 0.007 0.294 ± 0.008	$ \frac{\Omega_k}{-0.040 \pm 0.022} \\ -0.027 \pm 0.017 \\ -0.033 \pm 0.020 $	$\frac{H_0}{70.31 \pm 0.24}$ 70.47 \pm 0.24 70.37 \pm 0.25	flat wCDM Ω_M 0.300 ± 0.008 0.289 ± 0.007 0.295 ± 0.008	$\frac{1}{w}$ -1.043 ± 0.028 -1.046 ± 0.024 -1.046 ± 0.027		
The L _N likelihoods: GRBs+QSOs+BAO+Pantheon No Evolution Fixed Evolution Varying Evolution GRBs+QSOs+BAO+Pantheon +	$H_0 \\ 70.34 \pm 0.23 \\ 70.37 \pm 0.22 \\ 70.33 \pm 0.23 \\ H_0$	$\frac{\Omega_M}{0.299 \pm 0.008}$ 0.297 \pm 0.007 0.294 \pm 0.008 Ω_M	$ \frac{\Omega_k}{-0.040 \pm 0.022} \\ -0.027 \pm 0.017 \\ -0.033 \pm 0.020 \\ \Omega_k $	$\frac{H_0}{70.31 \pm 0.24}$ 70.47 ± 0.24 70.37 ± 0.25 H_0	flat wCDM Ω_M 0.300 ± 0.008 0.289 ± 0.007 0.295 ± 0.008 Ω_M	$\frac{w}{-1.043 \pm 0.028}$ -1.046 ± 0.024 -1.046 ± 0.027 w		
The L _N likelihoods: GRBs+QSOs+BAO+Pantheon No Evolution Fixed Evolution Varying Evolution GRBs+QSOs+BAO+Pantheon + No Evolution	H_0 70.34 ± 0.23 70.37 ± 0.22 70.33 ± 0.23 H_0 72.99 ± 0.17	$\frac{\Omega_M}{0.299 \pm 0.008}$ 0.287 ± 0.007 0.294 ± 0.008 $\frac{\Omega_M}{0.361 \pm 0.009}$	$ \frac{\Omega_k}{-0.040 \pm 0.022} \\ -0.027 \pm 0.017 \\ -0.033 \pm 0.020 \\ \underline{\Omega_k} \\ -0.026 \pm 0.017 $	H_0 70.31 ± 0.24 70.47 ± 0.24 70.37 ± 0.25 H_0 72.93 ± 0.18	flat wCDM Ω_M 0.300 ± 0.008 0.289 ± 0.007 0.295 ± 0.008 Ω_M 0.362 ± 0.010	$\frac{w}{-1.043 \pm 0.028}$ -1.046 ± 0.024 -1.046 ± 0.027 w -1.025 ± 0.026		
The L _N likelihoods: GRBs+QSOs+BAO+Pantheon No Evolution Fixed Evolution Varying Evolution GRBs+QSOs+BAO+Pantheon + No Evolution Fixed Evolution Fixed Evolution Fixed Evolution Fixed Evolution	H_0 70.34 ± 0.23 70.37 ± 0.22 70.33 ± 0.23 H_0 72.99 ± 0.17 73.03 ± 0.17	$\frac{\Omega_M}{0.299 \pm 0.008}$ 0.287 ± 0.007 0.294 ± 0.008 $\frac{\Omega_M}{0.361 \pm 0.009}$ 0.347 ± 0.008	$ \frac{\Omega_k}{-0.040 \pm 0.022} \\ -0.027 \pm 0.017 \\ -0.033 \pm 0.020 \\ \Omega_k \\ -0.026 \pm 0.017 \\ -0.011 \pm 0.018 $	$\begin{array}{r} H_0 \\ \hline 70.31 \pm 0.24 \\ 70.47 \pm 0.24 \\ \hline 70.37 \pm 0.25 \\ \hline H_0 \\ \hline 72.93 \pm 0.18 \\ \hline 73.06 \pm 0.19 \end{array}$	flat wCDM Ω_M 0.300 ± 0.008 0.289 ± 0.007 0.295 ± 0.008 Ω_M 0.362 ± 0.010 0.348 ± 0.009	w -1.043 ± 0.028 -1.046 ± 0.024 -1.046 ± 0.027 w -1.025 ± 0.026 -1.019 ± 0.024		

New statistics: Non-Gaussianity likelihoods for SNe Ia and QSQs -> reduced uncertainties

Table 2. Percentage difference of the uncertainties on the best-fit values of cosmological parameters obtained when using the \mathcal{L}_N instead of the \mathcal{L}_G likelihood.

	N	on-flat ACD	М	flat wCDM		
GRBs+QSOs+BAO+Pantheon	$\Delta_{\%}(H_0)$	$\Delta_{\%}(\Omega_M)$	$\Delta_{\%}(\Omega_k)$	$\Delta_{\%}(H_0)$	$\Delta_{\%}(\Omega_M)$	$\Delta_{\%}(w)$
No Evolution	-0.28	-0.20	- <mark>0.16</mark>	-0.34	-0.20	-0.26
Fixed Evolution	-0.30	-0.22	-0.32	-0.35	-0.22	-0.31
Varying Evolution	-0.23	-0.20	- <mark>0.17</mark>	-0.34	-0.20	-0.25
GRBs+QSOs+BAO+Pantheon +	$\Delta_{\%}(H_0)$	$\Delta_{\%}(\Omega_M)$	$\Delta_{\%}(\Omega_k)$	$\Delta_{\%}(H_0)$	$\Delta_{\%}(\Omega_M)$	$\Delta_{\%}(w)$
No Evolution	-0.26	-0.27	- <mark>0.1</mark> 9	-0.25	0	-0.13
Fixed Evolution	-0.26	-0.20	- <mark>0.1</mark> 4	-0.24	-0.10	-0.17
Varying Evolution	-0.29	-0.18	-0.23	-0.28	-0.10	-0.17

Dainotti et al. 2023 <u>2303.06974.pdf (arxiv.org)</u> Bargiacchi, Dainotti et al. 2023, MNRAS, 521, 3909 Dainotti et al. 2023, including B. Zhang, N. Fraija, ApJS, <u>2023arXiv230510030D</u>, press release from NAOJ In All configurations we have reduction of the scatter on all parameters

H0 central values are higher when probes are combined together thus we are closer to the SNe Ia Pantheon sample values! Besides the simultaneous fitting, we use the CCH as calibrators for the fundamental plane correlations Favale, Dainotti, Gomez, Migliaccio, A

Currently the Epeak-Eiso correlation has a scatter of 0.20 (Amati et al. 2022), but depending on the sample size reaches 0.55 (Liu et al. 2022, Liang et al. 2022, Li et al. 2023)

Fav	Favale, Dainotti, Gomez, Migliaccio , A&A submitted						
		а	b	C_o	$\sigma_{\rm int}$		
	Mode values	-0.97	< 0.21	50.11	0.21		
3D relation	Mean	-0.98 ± 0.16	< 0.21	$46.96^{+4.25}_{-1.38}$	$0.22\substack{+0.03 \\ -0.05}$		
	Mode values	-1.00		51.00	0.19		
2D relation	Mean	$-1.01\substack{+0.17\\-0.16}$		51.11 ± 0.54	$0.21\substack{+0.03\\-0.05}$		

With evolutionary effects we have

$$\sigma_{int} = 0.20^{+0.03}_{-0.05}$$

This is comparable with the fundamental plane relation $\sigma=0.18 + /0.09$

Thus, we have consistently reached the smallest scatter for the GRB relations in the literature with this sample

35

What else do we need for GRB cosmology?

New or tighter Reliable correlations

Increase the sample size, having a cosmology independent approach via low-z probes

Physical interpretation, connection with theory In the quest for the standard set

<u>37</u>

With machine learning For redshift inference, regression: 1) Dainotti, Narendra, al. 2021, ApJ,920, 2, 118. 2) Narendra, Gibson, Dainotti, et al. 2022, ApJS, 259, 2, 55. 3) Gibson, Narendra, Dainotti, et al. 2022, Frontiers, 9, 836215 4) Dainotti, ApJS, 267, 2, id 42, Lightcurve Reconstruction, 5) Dainotti et al. 2024, Inferring the Redshift of More than 150 GRBs with a Machine-learning Ensemble Model, ApJS, 271, 1, id.22, 15. 6) Dainotti, Narendra et al. 2024, ApJL, accepted, press from UNLV and Facebook post from Swift, Cosmic Leap: NASA Swift Satellite and AI avel the Distance of the Farthest Gamma-Ray Bursts | University of Nevada, Las Vegas (unlv.edu); (20+) Facebook Dainotti, et al. 2022, MNRAS, 514, 2, 1828-1856 (forecasts for

GRB cosmology)

Forecast including Swift, SVOM and Theseus (Einstein Probe data yet to be added)

M. G. Dainotti, et al. 2022, MNRAS, 514, 2, 1828-1856

So, we should not wait 18 years!

What are the next step?

39

And the party still continues...

Use data from Einstein Probe

- Extend the distance ladder with CCH which entails a model independent approach at high-z possibly with the use of GRBs for which the redshift is inferred
- Continue Combine GRBs with other probes which are treated similarly as GRBs and look for a standard set of QSOs to tighten the existing relations
- We already did in..

"Quasars: Standard Candles up to z= 7.5 with the Precision of Supernovae Ia" by Dainotti et al. ApJ, 950(1), id.45, 8 pp. (2023), ArXiv:2305.19668

The scavenger hunt for Quasar samples to be used as cosmological tools

Dainotti, M.G., et al. Galaxies, 12, (1), id.4 (2024), ArXiv:2401.11998

"A new binning method to choose a standard set of Quasars",

Dainotti, et al. Physics of the Dark Universe, Vol. 44, 101428, doi.org/10.1016/j.dark.2024.101428, https://arxiv.org/abs/2401.12847.

Some tension in Ω M also in QSOs?

Data Sample and results

40

• Data set: sample of 2421 Quasars (QSOs)

• <u>Methods</u>:

 $-\sigma$ -clipping technique applied both in luminosity and flux to select a QSO sub-sample composed of sources that better follow the X-UV QSO relation. σ -clipping technique reduces iteratively the scatter of the relation removing the outliers.

• <u>Results</u>:

-We have defined a sample of 983 Quasars up to z = 7.54 with reduced intrinsic dispersion $\delta = 0.007$ which determines Ω_M with the same precision of *Pantheon Type* la supernovae:

 $-\Omega_M = 0.268 \pm 0.022$ (The same precision reached in Scolnic et al. 2018)

–This is the first time that QSOs as standalone cosmological probes yield such tight constraints on Ω_M

"The scavenger hunt for Quasar samples to be used as cosmological tools" Dainotti, M.G., Bargiacchi, G., Lenart A.L. and Capozziello, S. Galaxies, 12(1), id.4 (2024), ArXiv:2401.11998

- <u>Data set</u>: sample of 2421 Quasars (QSOs)
- <u>Methods</u>:

-Huber regressor technique applied in redshift bins of the flux space to select a QSO sub-sample of sources that follow a tighter X-UV QSO relation

• <u>Results</u>:

–We discovered a sample of 1132 QSOs up to z = 7.54 exhibiting a reduced intrinsic dispersion, $\delta_F = 0.22 \text{ vs } \delta_F = 0.29$ (24% less), than the original sample. This sample enables us to determine $\Omega_{M=} 0.256 \pm 0.089$ with a precision of 0.09 by using QSOs as standalone probes.

Figure 11. Results obtained from the gold sample of 1132 QSOs from the cosmological fit of the flat Λ CDM model with γ' , β' , and δ' of the RL relation, corrected for redshift evolution in the luminosities and Ω_M left as free parameter together with the ones of the relation. H_0 is fixed to $70 \text{ km s}^{-1} \text{ Mpc}^{-1}$ with best-fit values with 1σ uncertainties: $\gamma' = 0.61 \pm 0.01$, $\beta' = 7.8 \pm 0.2$, $\delta' = 0.084 \pm 0.003$, and $\Omega_M = 0.256 \pm 0.089$. The dark region shows the 68% of probability of the parameters at play, while the lighter blue region the 95%.

"A new binning method to choose a standard set of Quasars"

43

Dainotti, M.G., Lenart A.L., Ghodsi, Chakraborty, Di Valentino, Montani 2024, Physics of the Dark Universe, 44, 101428, doi.org/10.1016/j.dark.2024.101428, arXiv:2401.12847.

- <u>Data set</u>: sample of 2421 Quasars (QSOs)
- <u>Methods</u>:

-bin-size maximization technique which enables an enhanced bin division

-Theil-Sen regressor technique applied in redshift bins of the flux space to select a QSO sub-sample composed of sources that better follow the X-UV QSO relation

• <u>Results</u>:

-A sample of 1253 QSOs up to z = 7.54 with an intrinsic dispersion, $\delta_F = 0.096 \text{ vs } \delta_F = 0.29 \text{ (68\% less)}$, than the original sample. We determine Ω_M with a precision of 0.064 by using QSOs as standalone probes: $\Omega_M = 0.240 \pm 0.064$

44

We aim to have the largest numer of sources possible to enable enough statistical power, but we discard outliers. This provides us with a high precision cosmological measurements. The optimal sample has 1253 sources.

FIG. 8: The matter density parameter, Ω_M , computed for each sub-sample obtained in the σ clipping process, is shown as a function of the size of these subsets. The colour scheme indicates the interval chosen in the σ -clipping algorithm. The error bars represent 1 σ uncertainties.

We investigate if the smaller

value of Ω_M obtained for the golden sample can be explained by the f(R) gravity model.

For this purpose we compute numerically the function DL.

The f(R) model succesfully explains the difference between Ω_M observed at the low-z with SNe Ia and smaller value obtained by QSOs at higher z

$6H\dot{\phi} = G(\phi) \,.$

FIG. 12: The distance luminosity in the Λ CDM and induced by the f(R) modified theory of gravity for $\Omega_M = 0.3$ are shown in dashed orange and continuous red, respectively, with the total QSO sample in grey and the 'gold' sample in blue.

The story of GRB cosmology does not end here, it is just the beginning...

check the decreasing trend of H0 SNE Ia Pantheon and Pantheon + with the new likelihoods

- Analyzing the impact of the BAO from DESI Collaboration
- Leveraging the constraints from the SH0ES SNe Ia (Riess et al. 2022)
- For the GRB sample increase we built the largest optical catalog to date (Dainotti et al., MNRAS submitted 53 coauthors)
- We continue to improve the GRB redshift prediction and LC reconstruction with Machine learning to reduce the number of years (ask me if you need data from reconstructed lightcurves)
- We continue the theoretical discussion: a given subset of GRBs fulfilling the magnetars can be standardizable candle.

Announcements

4

- MG 17 (parallel session on GRB correlations, their interpretation and cosmology)
- Parallel session on Machine Learning and AI on GRBs

If you are interested, please submit a talk by 10th June. The Organizers just let me know that online talks are also possible

Call for abstract in Galaxies for the special issue:

Special Issue "Gamma-Ray Bursts in Multiwavelength: Theory, Observational Correlations and GRB Cosmology"

The aim is to gather mini-review on the topics above. There is no page limits and I have several waivers to allow the publication to be free of charge.

Deadline for submission: 30th of September 2024.

If you are interested, please contact me.

Calls for JSPS for postdoc for two years. Internal deadline from NAOJ side is the 1th of August.

Inferring the unknown z

Finally, we inferred the z of 151 GRBs (generalization set).

Figure 3. Histogram comparing the distributions of the training set

 z_{observed} and the $z_{\text{prediction}}$ of the generalization set.

Dainotti et al. 2024, "Inferring the redshift of more than 150 GRBs with a machine learning ensamble", accepted in ApJS, https://arxiv.org/abs/2401.03589.

WHAT ARE WE TRYING TO DO **Overview of the redshifts** We are training a supervise<mark>d mac</mark>hine learning model on optical photometric **Currently, the SWIFT GRB catalog only has** GRB properties to reliably predict the **<u>26% of GRBs</u>** (~400) with measured redshift. redshift. Using this model, we will estimate the unknown redshift of GRBs. Redshift measurements are crucial for the • cosmological application of GRBs. **HOW ARE WE GOING DO IT?** Thus, a larger sample of GRBs with redshift • can help address many outstanding ► We are applying the SuperLearner (an cosmological mysteries. ensamble model) machine learning (ML) model to GRBs. People have been trying for a GRB redshift We use MICE to impute missing data estimator for 23 years with limited success. Applying Bias correction techniques to Finally, after two decades this method is correct for bias in the prediction. promising!

For the first time, using plateau properties for GRB redshift estimation.

Data Sample

- We are using 179 GRBs which show the optical plateau in the lightcurve.
- These are taken from "The Optical Two- and Three-dimensional Fundamental Plane Correlations for Nearly 180 Gamma-Ray Burst Afterglows with Swift/UVOT, RATIR, and the Subaru Telescope" (Dainotti et al. 2022d)

- The dataset contains GRBs from several telescopes and satellites Swift/UVOT, RATIR and the Subaru. We use 9 features in this analysis:
- 4 features from the prompt emission: Fluence, T90, Peak flux, Photon Index
- 5 features from the plateau emission: Time (Ta), Flux (Fa), Temporal index (α), Spectral index (β) at the end of plateau & Hydrogen column density (NH)

Missing data imputation Multivariate Imputation by Chained Equations (MICE)

- <u>30 GRBs</u> have missing data in log(Fluence), Photon Index, log(NH) and log(Peak).
- There is <u>one GRB</u> that has missing data in log(NH) and log(Peak) and <u>2 GRBs</u> with missing log(NH).
- Finally there are <u>12 GRBs</u> with missing log(Peak).
- We use Multivariate Imputation by Chained Equation (MICE) technique to impute <u>43 GRBs</u> with missing data.
- Increases our training sample by <u>24%</u>!
- Predictive mean-matching method known as "midastouch

Data Sample

This sample contains missing data as well

• We impute with MICE 34 GRBs

• We further **impute with MICE 10** GRBs

MICE imputations for log(NH)

MICE imputations for log(Peak)

32

MICE imputations for log(Fluence)

MICE imputations for Photon Index

The M-estimator \rightarrow removing outliers

33

Histogram of weights

weights

Methodology

- We developed an analytical formula using the 9 GRB properties
 - Combine the 9 features to give good estimate for log(z+1)
- Many formulae were generated using a formula generator
- ▶ We tested them in the Generalized Additive Model (GAM) framework and picked the best

$$\label{eq:constraint} \begin{split} \log(z+1) &= (\log(NH) + \log(T90) + PhotonIndex + \log(Fa))^2 \ + \log(Ta) + \alpha + \beta + \\ \log(Fluence) + \log(Peakflux) \end{split}$$

- We did test many other ML models, but these 4 obtained the highest weights by SuperLearner consistently
- For the results we perform ten-fold cross validation 100 times

Results From Superlearner:

Results After Optimal Transport Bias Correction: to correct for biases

Results After Optimal Transport Bias Correction:

Samplesize = 162 | In 2sigma = 149 (92%) | In sigma =112 (69%) r = 0.94 | Sigma = 0.454 | RMS = 0.46 | Bias = -0.028 | NMAD = 0.64

For 162 GRBs: Pearson correlation= 0.94RMSE = 0.46Bias = 0.03 37

Comparing with Ukwatta et al. 2016, this is a **56% increase in Pearson correlation**

Continuing with X-rays Dainotti et al. 2024, ApJS, 271, 1, id.22, 15.

log(T _{so})	(og(Fa)	log(Tal	10	.p	5 (T)	log(Pluence)	Photon Index	log(NH)	Jog(Peak Flux)	log(z+1)	2	.
	Con. -0.144	Con: 0.389	Com 0.323	Corr. -0.980	Corr. -0.034	Corr 0.335	Corr. 0.037	Corr. -0.077	Corr. -0.261	Corr. 0.157	Corr. 0.160	log(190)
	1	Corr -0.738	Corr. 0.119	Cor -0.065	Corr -0.247	Corr: 0.432	Corr. -0.306	Corr 0.090	Corr: 0.564	Corr -0.151	Corr: -0.183	10g(Fil
-	-		Corr	Corr 0.026	Corr. 0,134	Corr 0.020	Corr 0,258	Corr -0.134	Corr: -0.290	Corr -0.108	Carr -0.063	log(T _i)
	-			Gon: -0.118	Gorf: -0.199	Corr: 0.235	Corr: -0.108	Corr: -0.014	Corr: -0.022	Corr: 0.041	Corr: 0.043	a
	*			1	Com 0.378	Com -0.095	Corr 0.055	Corn -0.001	Com: -0.043	Com -0.001	Com -8.038	9
			*	*	A	Corr -0.147	Corr. 0.156	Cort 0.059	Corr. -0.150	Corr. 0.055	Carr. 0.022	T
			.	*		1	Corr. -0.335	Com -0.005	Corr: 0.675	Corr: -0,135	Corr: -0.136	jacoant (160)
	***	*			*		A	Corr -0.079	Corr: -0.281	Corr -0.213	Carr -0.210	Photon Indes
6			a.		*	*		1	Corr: 0.048	Corr. 0.284	Corr: 0.273	lag/MP()
	.			*		all'			k	Com: -0.267	Corr. -0.300	log(Peak Flag)
				*	*				-		Carr 0.972	log(z+f)
				*						/	h	1

The correction to the luminosity distance

9

At redshift $z \approx 10$ the correction to the luminosity distance becomes in the order of $0.5 * 10^{29} cm$ 1Mpc=3.0857E+24 cm, thus 16233 Mpc=16.23 Gpc. To have an idea Virgo cluster is only 16.5 Mpc away, so this distance is 1000 times larger

Now, are you ready for GRB-cosmology?

What can we investigate with GRBs, SNe Ia, Quasars and BAO?

Open problems: the so-called Hubble tension (Dainotti et al. ApJ, 2021-> **listed in top 1% paper in web** of Science)

<u>10</u>

The latest cosmological results with GRBs only

14

12

10

8

(b) Varying only H_0 without evolution

<H0>:74.99

OH .: 14.27

72

73

Histogram ($< H_0 >$)

Histogram (< w >)

-0.98

(c) Varying only w without evolution

-0.96 -0.94 -0.92

<w>:-0.98

σ.,: 0.58

-1.06 -1.04 -1.02 -1.00

M. G. Dainotti, A. Lenart, et al., 2022, MNRAS, 518, 2, 2201-2240

<u>13</u>

(tension increases, but errorbars are larger)

(d) Varying only Ω_M with fixed evolution

(e) Varying only H_0 with fixed evolution

75

Ho

76

74

(f) Varying only w with fixed evolution

22 Results from QSO cosmology • QSOs+SNe Ia: compatibility with standard 9.0 8.5 9 8.0 7.5 cosmological model 0.235 0.230 SV 0.225 0.220 0.215 0.35 0 0.30 0.25 What happens to 71 the tension? 욱 70 69 0.22 0.23 0.25 0.30 70 71 0.60 0.62 0.35 SV Om HO

"A bias-free cosmological analysis with quasars alleviating H0 tension", Lenart A.L., Bargiacchi G. Dainotti, et al. 2022, ApJS, 264, 46, research highlight

- 1σ errors on H_0 strongly decrease with non-calibrated QSOs + SNe
- In these cases all H_0 values compatible within 2σ

with each other pointing to the region

intermediate between the one of CMB and SNe

Tension due to an evolution of H₀ with redshift or a constant value that stands between the one of SNe and CMB?

See:

"On the evolution of the Hubble constant with the SNe Ia Pantheon sample and baryon acoustic oscillations: a feasibility study for GRB-cosmology in 2030", Dainotti, M.G. et al. 2022, Galaxies 10(1), p.24

"On the Hubble constant tension in the SNe Ia Pantheon sample.", Dainotti, M.G. et al. 2021, ApJ 912(2), p.150

Possible reliable candidates are the $L_X - T^*{}_a$ and Lpeak-La correlations

10

b=-1.0 -> Energy reservoir of the plateau is constant

La-Ta correlation first discovered by Dainotti, et al. (2008), MNRAS, 391, L 79D, later updated by Dainotti et al. (2010), ApJL, 722, L 215; Dainotti et al. (2011a), ApJ, 730, 135; Dainotti et al. (2015a), ApJ, 800, 1, 31. The La-Lpeak first discovered by Dainotti et al., MNRAS, 2011b, 418, 2202.

To account for selection biases **Dainotti et al. 2013**, **ApJ**, **774**, **157 and Dainotti et al. 2015b**, **MNRAS**, **451**, **4** showed that both these correlations are intrinsic to GRB physics and not to selection biases.

GRB phenomenology

Important features of a well-sampled GRB light curve observed by Burst Alert Telescope+ X-Ray Telescope +Swift (2004ongoing). The blue line is the phenomenological Willingale model (R. Willingale et al. 2007)

- Flashes of high energy photons in the sky (typical duration is few seconds).
- Cosmological origin accepted (furthest GRBs observed z ~ 9.4).
- Extremely energetic and short: the greatest amount of energy released in a short time.
- X-rays, optical and radio observed after days/months (afterglows), distinct from the main γ-rays.

Density rate evolution and luminosity function:

47

46

log₁₀(L) (ergs/s)

48

45

- The <u>blue points</u> in both pictures represent the LF and DRE derived using Zobs.
- The <u>red</u> points in both pictures represent the LF and DRE derived using Zpred.
- derived using Zpred.
 The <u>orange</u> and <u>purple</u> show the selection bias corrected density rate evolution for Zobs and Zpred respectively.

Density rate evolution and luminosity function:

47

46

log₁₀(L) (ergs/s)

48

45

- The <u>blue points</u> in both pictures represent the LF and DRE derived using Zobs.
- The <u>red</u> points in both pictures represent the LF and DRE derived using Zpred.
- derived using Zpred.
 The <u>orange</u> and <u>purple</u> show the selection bias corrected density rate evolution for Zobs and Zpred respectively.

For 20 years, we've been struggling: how to use GRBs as standard candles? Challenge: Light curves vary widely - "if you've seen one GRB, you've seen one GRB"

4

Swift lightcurves taken from the Swift repository: this is the main disadvantage of the prompt

Why are GRBs potential cosmological tools?

3

Because They...

- Can be probes of the early evolution of the Universe.
- Are observed beyond the epoch of reionization.
- Allow us to investigate Pop III stars.
- Allow us to track the star formation.
- Are much more distant than SN Ia (z=2.26) and quasars (z=7.54).

But They...

- Don't seem to be standard candles with their isotropic prompt luminosities spanning over 8 order of magnitudes (this is a problem for the machine learning analysis too), different classes and unclear physics of the progenitor.
- Good news: More GRB redshifts with Machine learning and plateau emission thanks to Swift indirectly

The best likelihood of the BAO, QSQs and GRBs

Bargiacchi, G., Dainotti, M.G., Nagataki, S. and Capozziello, S. MNRAS, 521(3), pp.3909-3924 (2023), ArXiv:2303.07076

GRBs are used with the Dainotti relations in X-rays and optical for long GRBs with plateaus
Can high-z probe cast light on the Ho tension?

Let's consider GRBs observed up to z=9.4 What's the catch? <u>26</u>

What else can we do?

46

We can change the strategy/methodology to achieve the standard set and compare the differences

And we did even with multiple methods in

► The scavenger hunt for Quasar samples to be used as cosmological tools Dainotti, M.G., Bargiacchi, G., Lenart A.L. and Capozziello, S. Galaxies, 12, (1), id.4 (2024), ArXiv:2401.11998

"A new binning method to choose a standard set of Quasars",

Dainotti, Lenart et al. Physics of the Dark Universe, Vol. 44, 101428, doi.org/10.1016/j.dark.2024.101428, https://arxiv.org/abs/2401.12847.

Thank you for your attention!

<u>maria.dainotti@nao.ac.jp</u>

mariagiovannadainotti@yahoo.it

The motivation behind the plateau emission

<u>13</u>

- Magnetars, accretion onto black hole models (already mentioned in Van Eerten, Asaf, Mei etc)
- Additional references for the magnetar model (Stratta, Dainotti et al. 2018, Rowlinson, Dainotti et al. 2014, Rea et al. 2015)
- A low Γ, Husne-Dereli et al. 2022.
- Take away: "the Afterglow is easier" Bing Zhang in the panel discussion
- Thus, more suited for standard candle!

What are the fundamental cosmological parameters that we can infer with GRBs?

 H_0 (Hubble constant), Ω_{0m} (total matter density), $\Omega_{0\Lambda}$ (dark energy density), w (equation of state parameter)

ACDM MODEL IS BASED ON THE PRESENCE OF THE **(COLD DARK MATTER**) (CDM, NOT DIRECTLY VISIBLE) AND THE (COSMOLOGICAL CONSTANT)

<u>5</u>

 Ω_{0m} DESCRIBES THE TOTAL MATTER DENSITY (DARK MATTER + BARYONS) OF THE UNIVERSE

 Λ is the cosmological constant that describes responsible for the expansion of the universe

w IS THE PARAMETER OF THE EQUATION OF STATE FOR THE UNIVERSE (w = -1 IN THE ACDM MODEL)

 H_0 IS A CONSTANT THAT DESCRIBES THE UNIVERSE EXPANSION RATE

GRB phenomenology

Important features of a well-sampled GRB light curve observed by Burst Alert Telescope+ X-Ray Telescope +Swift (2004ongoing). The blue line is the phenomenological Willingale model (R. Willingale et al. 2007)

18

- Flashes of high energy photons in the sky (typical duration is few seconds).
- Cosmological origin accepted (furthest GRBs observed z ~ 9.4).
- Extremely energetic and short: the greatest amount of energy released in a short time.
- X-rays, optical and radio observed after days/months (afterglows), distinct from the main γ-rays.

20

Why are GRBs potential cosmological tools?

Because They...

- Can be probes of the early evolution of the Universe.
- Are observed beyond the epoch of reionization.
- Allow us to investigate Pop III stars.
- Allow us to track the star formation.
- Are much more distant than SN Ia (z=2.26) and quasars (z=7.54).

But They...

Don't seem to be standard candles with their isotropic prompt luminosities spanning over 8 order of magnitudes (this is a problem for the machine learning analysis too) and we have a few redshifts measured.

- The less varied properties of the plateau compared to the prompt favor afterglow relation for cosmological applications.
- What is the standard set of the GRBs to be used?

GRB zoo

Which GRB class best works as a standard candle?

None of these classes are standard candles (but good news are coming!) The drive is to standardize them.	Class	Duration of prompt emission	X-ray fluence/ γ-ray fluence	Presence of supernovae or optical bumps or other features	Sakamata at	
	X-ray flashes	>2 s	>1	In some cases	al. 2003	
	GRB-SNe lb/c	>2 s	<1	Yes	Woosley & Bloom 2006	
	Short	<2 s	<1	No	Mazet et al. 1992,	
	Short Extended Emission (SEE)	<10 s	<1	Generally not	Norris & Bonnel 2006)	
	Long	>2 s	<1	No		
	Very Long	> 500s	< 1	Yes	Piro et al. 2014,	
	Ultra Long	> 1000s	< 1	Yes	Zhang et al.	
	Type-I	<2s		No +low SFR+ natal kick	2009,	
	Type-II	>2s		Yes +high SFR+ no kick	Beniamini et al. 2021	

For GRB standardization, possible reliable candidates are the Ta-La and Lpeak-La correlations

Update numbers compared to previous work in Srinivasaragavan, Dainotti et al. 2020 with Dainotti et al. in preparation: from 01.2005-02/2024: 255 GRBs with known redshift out of 427 (60%) and 299 with unknown redshifts from 01.2005-02/2024.

23

Dainotti 2D and Oates relation			Dainotti 3D relation		Dainotti 2D and 3D relation in				
LaX - T*aX & LaX-LpX confirming the			(Lax - T*ax - Lpx)		radio and optical				
reliability after bias correction			(reliable after bias correction)		(probing these to be unbiased relation)				
2008	2010	2011	2015	2016	2017	2020	2021	2022	

<u>24</u>

THE EXTENSION OF THE LX-TA AND LX-LPEAK CORRELATIONS GIVEN THEIR INTRINSIC NATURE

Press release by NASA and press conference at the AAS June 2016: https://swift.gsfc.nasa.gov/news/2016/grbs_std_candles.html Mention in Scientific American, Stanford highlight of 2016, INAF Blogs, UNAM gaceta, and many online newspapers took the news

M. G. Dainotti, S. Postnikov, X. Hernandez, M. Ostrowski, 2016, ApJL, 825L, 20

▶ the 3D Lpeak-Lx-Ta correlation **is intrinsic** and it has a reduced scatter, **O**int of 24 %.

The plateau emission in y-rays (CAT II) 25 (Dainotti et al. 2021, in collaboration with the Fermi-LAT members ApJS 255, 13) Spin-off paper 090510 of the work in 50 Log Flux (erg cm ⁻² s ⁻¹) the second log (L_a/erg s⁻¹ 9 Ab -5 -6GRB catalog -7 $-\epsilon$ 3 LAT GRBs follow the 3D Dainotti relation -103 n 2 -1 (yellow points) Log Time (s) 44 090902B Log Flux (erg cm ⁻² s ⁻¹) 2 $\log(T_a/s)$ 50 52 log (L_{peak}/erg s⁻¹) 54 -102 0 3 Log Time (s) 160509A 20 Log Flux (erg cm⁻² s⁻¹) The LAT GRBs have z Swift GRBs -7 LAT GRBs shorter plateaus compared to X-rays

2

3

Log $T_{\theta}(s)$

4

-10

1.0

1.5

2.0

2.5

Log Time (s)

3.0

3.5

4.0

The 3D correlation in optical exists for 58 GRBs !!! M. G. Dainotti, et al., 2022c, ApJS, 261, 2, 25. Press release from NAOJ

Figure 5. Upper panels: 58 GRBs in the $L_{opt}^{(\prime)} - T_{opt}^{(*\prime)} - L_{opt}^{(\prime)}$ parameter space with the fitted plane parameters in Table 2, including LGRBs (black circles), SGRBs (red cuboids), GRB-SNe Ic (purple cones), XRFs and XRRs (blue spheres), and ULGRBs (green icosahedrons). The left and right panels display the 3D correlation with and without any correction for both redshift evolution and selection biases, respectively. Lower panels: the distances of the GRB of each class indicated with different colors from the Gold fundamental plane, which is taken as a reference, with and without correction for redshift evolution and selection biases, respectively.

• SNe lb/c (ABC)->7

<u>26</u>

COMPARING CORRELATIONS IN WAVELENGTHS

Levine, Dainotti et al. ApJL,925, 15, 2022

Dainotti et al. 2021, Galaxies,

NOT CORRECTED

The fundamental plane relation for new classes: Ambushing the standard candle in its own nest

Dainotti, Lenart, Sarracino, Nagataki, Capozziello & Fraija 2020, ApJ, 904, issue 2, 97, 13

The platinum sample: a subset of the gold sample obtained after removing gold GRBs with at least one of the following features:

28

- ▶ Tx is inside a large gap of the data, and thus has a large uncertainty.
- A small plateau duration <500 s with gaps after it. This could mean that the plateau phase is longer than the one observed.
- Flares and bumps at the start and during the plateau phase.
- ▶ It reduces the scatter of 31%.

Press release distributed by the AAS, issued by Jagiellonian, Space Science Institute, and by INAF (Italian National Astrophysics Institute) and interview by INAF.

The fundamental plane relation for new classes

Dainotti et al. 2020, ApJ, 904, issue 2, 97, 13

Figure 1. The 2D projection of the $L_X - T_X^* - L_{peak}$ relation for the 222 GRBs of our sample, with a plane fitted including LGRBs (black circles), SGRBs (red rectangles), KN-SGRBs (dark yellow rhombuses), SN-LGRBs (orange triangles), XRFs (blue circles), ULGRBs (dodecahedrons), and GRBs with internal plateaus (green stars).

- Several KN have been associated with short GRBs.
- All cases are presented in Gompertz et al. 2019, Rossi et al. 2020.

29

Intrinsic scatter after correction for biases σ =0.18 +/0.09

• The temporal power-law (PL) decay index of the plateau, α_i : a very steep decay, $\alpha_i \ge 3$ for Li et al. (2018) and $\alpha_i \ge 4$ for Lyons et al. (2010), indicates the internal origin of the plateau related to the magnetar.

3D fundamental plane relations for different samples: 30 the whole, GRBs associated with KNe and SGRB and KNe.

50

Dainotti et al. 2020, ApJ, 904, issue 2, 97, 13

Figure 8. The $L_X - T_X^* - L_{peak}$ relation for the SGRB sample with separated KN-SGRB cases. We note here that all the KN-SGRBs fall below the best-fitting plane.

Two different classes within the magnetar scenario

G. Stratta, M. G. Dainotti, S. Dall'Osso, X. Hernandez, G. De Cesare, 2018, ApJ, 869, 155

- The spin-down luminosity of the magnetar is entirely beamed within Ojet (=jet opening angle)
- The long GRB 070208 (circle) and the peculiar GRB 060614A (square).
- Previous literature: Zhang et al. 2013, A. Rowlinson et al. 2014 including Dainotti, N. Rea et al. 2015 (including Dainotti), P. Beniamini et al. 2017, P. Beniamini & R. Mochkovitch 2017.
- Within the external shock model (G. Srinivasagaravan, M. G. Dainotti et al. 2020, et al. 2020).

For a more a complete review see

IOP Expanding Physics

Gamma-ray Burst Correlations

Current status and open questions

Maria Dainotti

Dainotti, M.G., & del Vecchio, R., "Gamma Ray Burst afterglow and promptafterglow relations: An overview", NAREV, 77, 23 (2017).

<u>32</u>

Dainotti, M.G., del Vecchio, R. & Tarnopolski, M., "Gamma Ray Burst Prompt correlations" Advances in Astronomy, vol. 2018, id. 4969503.

> Dainotti & Amati, "Gamma Ray Burst selection effects in prompt correlations: an overview", PASP, 30, 987, 051001 (2018b).

> > Dainotti 2019, IOP, expending Physics

Why should we use ML and not forward fitting method with the established relations?

What do we gain with Lightcurve Reconstruction?

GRBs as distance indicators: Drawbacks of forward fitting methods

Dainotti et al. 2011a, ApJ, 730, 201133Each correlation carries its own scatter added to the the scatter of the variables and
dependence of z is through dL. Previous attempts to employ GRB relations are the ones by
Atteia et al. 2002, Yonetoku et al. 2004, Guiriec et al. 2005. There is a circularity dependence

 $\Phi(E) \propto E^{-\gamma_a} \propto E^{-(\beta_a+1)}$, where (β_a, γ_a) are the spectral and photon indices, respectively. It is worth stressing that the fit of $L_{\rm X}^* = \frac{4\pi D_L^2(z) F_{\rm X}}{(1+z)^{1-\beta_a}},$ • (Ta) (erg/s) (6)For small where $F_{\rm X} = F_a \exp(-T_p/T_a)$ is the observed flux at the variation of time T_a . luminosity→ $\mu_{\text{obs}}(z) = 25 + \frac{5}{2} \log \left[\frac{L_X^*(T_a)}{4\pi f_a(T_a, T_a, F_a T_a)(1+z)^{(-1+\beta_a)}} \right]$ Large variation in z $= 25 + \frac{5}{2} \left\{ a \log \left[\frac{T_a}{1+z} \right] + b \right\}$ $-\frac{5}{2}\log\left[4\pi f_a(T_a, T_p, F_aT_a)(1+z)^{(-1+\beta_a)}\right], (15)$ 1+z

Physical interpretation: testing the standard fireball model→ standard candle?

The Closure Relations in γ-rays Dainotti et al. 2023, Galaxies, 11, 1

The Closure Relations in X-rays Dainotti et al. 2021, PASJ, 73, 4.

The Closure Relations in optical Dainotti et al. 2022, ApJ, 940, 2, 169.

The scatter drawn by using the closure relationships is comparable with the current scatter

The Closure Relations in radio Levine, Dainotti et al. 2023, MNRAS, 519, 3.

<u>35</u>

46

Stay tuned: the story continues

Next step is to use all these standard candles improved and extended subset to cast light on the new precision on cosmological parameters.

FORECASTS: THE PRECISION ON Ω_M WITH GRBs with the 3D optical relation

<u>30</u>

M. G. Dainotti, et al. 2022, MNRAS, 514, 2, 1828-1856

(a) OPTICAL | Simulation Results for the Full OPT Base with Undivided Errors

40

Figure 3. Upper panel: The values of Ω_M and their associated uncertainties vs. the number of Quasars. The color bar on the right shows the normalized probability density, indicating for each sample size the most probable value of Ω_M , thus the smallest uncertainty on Ω_M . This Fig. indicates that the smallest error bar on Ω_M (the red contour) is achieved for $N \approx 2000$, which yields $\Omega_M = 0.119 \pm 0.019$. This is obtained for our golden sample assuming a flat Λ CDM model. Bottom panel: Values of Ω_M with corresponding 1 σ uncertainties as a function of the σ -clipping threshold and the probability distribution function (PDF) showed with the colour bar on the right side. The red line is the best-fit of Ω_M points.