Pantheon+ and friends: an insight on peculiar velocities probes

Francesco Sorrenti

Département de physique théorique, Université de Genève

"Standard cosmology at the threshold of a change?"

Aristotle University of Thessaloniki

 $5^{th}\ \mathrm{June}\ 2024$

<ロト < @ ト < 三 ト < 三 ト 三 三 の < @ </p>

Pantheon+ and friends

- Pantheon+ 1701 SNe Ia (77 cepheid hosted)
- DES Y5 1635 SNe Ia at higher z
- ZTF DR2 with \sim 3000 SNe Ia coming soon
- CF4 55877 galaxies gathered into 38065 groups
- Euclid test of homogeneity and isotropy

The dipole of Pantheon+SH0ES data (JCAP 11(2023)054)

For many far away sources, we expect same dipole as CMB

 \rightarrow In SN distances, Doppler term enhances the dipole due to our peculiar velocity at low redshift

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

 \implies we need a rather *limited* number of sources

At
$$z \ll 1$$
 , $\mathcal{H}(z)r(z) \simeq z$ and

$$d_L(z, \mathbf{n}) \simeq \bar{d}_L(z) \left(1 + \frac{1}{\mathcal{H}(z)r(z)} \mathbf{v}_0 \cdot \mathbf{n} \right)$$

In a flat ΛCDM :

$$\bar{d}_L(z) = \frac{1+z}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_m (1+z)^3 + 1 - \Omega_m}}$$
(1)

Actually, we neglected source term in $(\mathbf{v}_0 - \mathbf{v}(\mathbf{n}, r(z))) \cdot \mathbf{n}$

It is correct unless there is a large 'bulk velocity'

Results

Considering all the SNe with $z > z_{cut}$:

$z_{ m cut}$	v_0	H_0	Ω_m	ra	dec
Ref. value	369	73.6	0.334	167.942	-6.944
No cut	328^{+35}_{-42}	$73.11\substack{+1.07 \\ -0.96}$	$0.339\substack{+0.018\\-0.019}$	$139.4\substack{+7.2 \\ -8.0}$	$42.0^{+7.2}_{-6.6}$
0.005	344_{-40}^{+42}	73.5 ± 1.0	$0.335\substack{+0.019\\-0.018}$	$147.6\substack{+8.0 \\ -9.5}$	$48.9^{+6.9}_{-6.7}$
0.01	302^{+38}_{-49}	$73.47\substack{+0.97\\-1.09}$	$0.340\substack{+0.020\\-0.017}$	$141.1_{-8.2}^{+8.6}$	$34.4^{+9.1}_{-10.1}$
0.0175	377^{+57}_{-62}	$73.46\substack{+1.10 \\ -0.97}$	$0.342\substack{+0.016\\-0.020}$	$132.4^{+10.3}_{-8.2}$	$45.2^{+8.3}_{-9.4}$
0.025	434^{+91}_{-77}	$73.38\substack{+1.10 \\ -0.95}$	$0.341\substack{+0.020\\-0.017}$	$137.1^{+11.9}_{-9.6}$	$42.1_{-10.6}^{+9.9}$
0.0375	490^{+110}_{-130}	$73.6^{+1.1}_{-1.0}$	$0.338\substack{+0.018\\-0.021}$	141^{+18}_{-15}	33^{+17}_{-18}
0.05	370^{+150}_{-160}	$73.55_{-0.99}^{+1.17}$	$0.333\substack{+0.022\\-0.019}$	167^{+37}_{-30}	21^{+34}_{-28}
0.1	$620\substack{+250 \\ -310}$	$73.5^{+1.0}_{-1.2}$	$0.338\substack{+0.025\\-0.026}$	211^{+29}_{-31}	-2^{+46}_{-24}

• H_0 and Ω_m agree well with Pantheon+ and insensitive to z_{cut}

- v_0 remains within about 2σ of the Planck value
- Direction is very different!

▲□▶ ▲圖▶ ★ 差▶ ★ 差▶ 差目目 のQ@

χ^2 analysis

$z_{ m cut}$	$\chi^2_{ m No-dip}$ - $\chi^2_{ m best-fit}$	$\chi^2_{\rm Planck}$ - $\chi^2_{\rm best-fit}$	$\chi^2_{z_{HD}}$ - $\chi^2_{\rm best-fit}$
No cut	88.2	66.4	9.1
0.005	88.5	68.5	19.1
0.01	62.1	41.4	15.0
0.0175	53.6	42.6	14.4
0.025	41.7	19.2	-2.1
0.0375	22.3	5.3	1.3
0.05	8.7	0.9	-1.0
0.1	7.4	3.4	2.9

where z_{HD} is the cmb corrected redshift with v_{pec} correction

For $z_{\rm cut} \leq 0.02$:

- Best fit dipole very strongly favored over no dipole or the Planck dipole
- Also wrt Pantheon+ p-value ≥ 97.5 %

For $z_{\rm cut} \ge 0.05$:

• Dipole no longer clearly detected \Longrightarrow dipole correction is of the same order of noise

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

'Bulk velocity'

 ${f v}_{
m bulk}={f v}_0-{f v}_{
m Planck}$ is the bulk velocity of a sphere around us with radius $R\lesssim z/H_0$

Figure: Ref.: $|\mathbf{v}_{\mathrm{bulk}}| = 182$ km/sec (ra, dec) = (191°,-61°) used by Pantheon+

Larger amplitude, but directions in agreement!

Allowing for a dipole, a monopole and a quadrupole for the source:

> $\mathbf{n} \cdot \mathbf{v}(\mathbf{n}(t_0 - t(z)), t_0) =$ $\mathbf{n} \cdot \mathbf{v}^{(\text{bulk})} + n^i (\alpha_{ij} + \gamma \,\delta_{ij}) n^j$,

with α_{ij} symmetric traceless tensor.

- Monopole, dipole, quadrupole are detected
- Dipole consistent with Watkins et al., 2023

$\Delta\chi^2$		
Bulk + quadrupole	Bulk + quadrupole + monopole	
5.92	10.08	
3.15	3.45	
6.40	7.33	
5.36	7.07	
7.95	8.06	
8.04	8.64	
9.37	9.21	
9.52	9.80	
	Bulk + quadrupole 5.92 3.15 6.40 5.36 7.95 8.04 9.37 9.52	

 $\Delta \chi^2$

Table: $\Delta\chi^2$ differences wrt our previous analysis

- At low z, all the multipoles are of the same order
- At high z, quadrupole is more relevant and the only one clearly detected

An agnostic approach (in preparation)

Taylor expanding:

$$d_L(z) = z \, d^{(1)} + \frac{1}{2} z^2 \, d^{(2)} + \frac{1}{6} z^3 \, d^{(3)} \tag{4}$$

From $d^{(i)}$ we can obtain H_0 , q_0 , j_0

An agnostic approach (in preparation)

Allowing a dipole for the redshift z:

$$z^{(1)} \simeq z - \mathbf{v} \cdot \mathbf{n} \tag{5}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)

An agnostic approach: redshift monopole and dipole (in preparation)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ● ● ●

Conclusions

Bright future for peculiar velocity surveys

- v_{pec} appear to be relevant in many of the key cosmology topics
- Further detailed analysis seems necessary

Next steps

- Finalising agnostic approach study
- Applying our routine to other datasets

(日) (日) (日) (日) (日) (日) (日)

Thanks for your attention!

Supernovae redshift contribution

Low-z vs high-z supernovae

No cut

- High-z Snae constrain cosmological parameters
- Low-z Snae determine dipole

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

1701 SNe lightcurves \rightarrow 77 Cepheid hosts

$$\mu = 5 \log_{10}(D_L/1 \text{Mpc}) + 25 = 5 \log_{10} D_L + M$$

MCMC routine

$$\log(\mathcal{L}) = -\frac{1}{2}\Delta\mu^T C^{-1}\Delta\mu \tag{7}$$

$\Delta u^i = \int$	$\int \mu^i + \delta M - \mu^i_{\text{ceph}},$	$i \in Cepheid \ hosts$
$\Delta \mu_L = $	$\mu^i + \delta M - \mu^i_{\text{model}},$	otherwise

$$\mu_{\text{model}}^{i} = 5 \log \left(\frac{D_L(z_i, \mathbf{n}_i)}{\text{Mpc}} \right) + 25 \qquad (8)$$

Parameter	Prior range
v_0	[0, 1200] km/s
δM	[-100, 100]
H_0	[30, 100] km/s/Mpc
Ω_m	[0, 1]
ra	[0°, 360°]
dec	[-90°, 90°]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□▶ ◆□

Pantheon+	and	friends:
-----------	-----	----------

Fixing the velocity direction

Fixing direction according to Planck

 $\longrightarrow |v_0|$ smaller than Planck value

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Peculiar velocities in Pantheon+

• 'Ad hoc" \mathbf{v}_{bulk} within $R = 200h^{-1}\text{Mpc}$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Luminosity distance

For a spatially flat universe:

$$D_L(z, \mathbf{n}) = \bar{D}_L(z) \left\{ 1 + \frac{1}{\mathcal{H}(z)r(z)} (\mathbf{v}_0 \cdot \mathbf{n}) - \left(\frac{1}{\mathcal{H}(z)r(z)} - 1\right) \left[(\mathbf{v} \cdot \mathbf{n}) - \Psi - \int_0^{r(z)} dr (\dot{\Psi} + \dot{\Phi}) \right] - \Phi + \int_0^{r(z)} \frac{dr}{r} \left[1 - \frac{r(z) - r}{2r(z)} \Delta_{\mathbf{n}} \right] (\Phi + \Psi) \right\}$$
(9)

In a flat ΛCDM :

$$\bar{D}_L(z) = \frac{1+z}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_m (1+z)^3 + 1 - \Omega_m}}$$
(10)

At $z \ll 1$, $\mathcal{H}(z)r(z) \simeq z$ and:

$$D_L(z, \mathbf{n}) \simeq \bar{D}_L(z) \left(1 + \frac{1}{\mathcal{H}(z)r(z)} \mathbf{v}_0 \cdot \mathbf{n} \right)$$

A little caveat

• We neglect source term $\mathbf{v}(\mathbf{n}, r(z))$ in:

$$(\mathbf{v}_0 - \mathbf{v}(\mathbf{n}, r(z))) \cdot \mathbf{n} \tag{11}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

• It is correct unless there is a large 'bulk velocity'

• Since it cannot be modelled independently from the data, we see v_0 as difference between observer velocity and a common bulk

https://github.com/PantheonPlusSH0ES/DataRelease

• 1701 SNe lightcurves \rightarrow 77 Cepheid hosts

 $\mu = 5 \log_{10}(D_L/1 \text{Mpc}) + 25 = 5 \log_{10} D_L + M$

- Covariances (statistical + systematics)
- *z_{hel}*: Heliocentric Redshift
- *z_{CMB}*: CMB Corrected Redshift
- z_{HD} : Hubble Diagram Redshift (with CMB and v_{pec} corrections)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■□ のQ@

About redshift

- At very low z, SNe have correlated velocities which will reduce the dipole amplitude
- Higher z_{cut} , the less SNe in the sample and the smaller their contribution to the dipole

$z_{ m cut}$	Pantheon+ without Cepheids	Cepheid hosts	Pantheon
No cut	1624	77	1048
0.005	1615	50	1048
0.01	1576	7	1046
0.0175	1468	2	1010
0.025	1312	0	976
0.0375	1126	0	915
0.05	1054	0	890
0.1	960	0	837

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pantheon+ 50 dec [deg] 0 -50 ... Pantheon 50 dec [deg] 0 ۰. ¢ -50 . 50 100 150 200 250 300 350 Ó ra [deg] -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

log₁₀ (z)

◆□▶ ◆□▶ ◆目▶ ◆目▼ ●○○

MCMC routine

$$\log(\mathcal{L}) = -\frac{1}{2}\Delta \boldsymbol{\mu}^T C^{-1} \Delta \boldsymbol{\mu}$$

$$\Delta \mu_L^i = \begin{cases} \mu^i + \delta M - \mu_{\text{ceph}}^i, & i \in \text{Cepheid hosts} \\ \mu^i + \delta M - \mu_{\text{model}}^i, & \text{otherwise} \end{cases}$$

$$\mu_{\text{model}}^{i} = 5 \log \left(\frac{D_L(z_i, \mathbf{n}_i)}{\text{Mpc}} \right) + 25$$
 (12)

◆□▶ ◆□▶ ◆目▶ ◆目▼ ●○○

Parameter	Prior range
$v_0 \\ \delta M$	[0, 1200] km/s [-100_100]
H_0	[30, 100] km/s/Mpc
Ω_m	[0, 1] [0° 260°]
$\sin(\text{dec})$	[0 , 300] [-1,1]

Comparison with Pantheon

Figure: Thanks to N. Horstmann arXiv:2111.03055

- Validity check
- For Pantheon v_0 is 2.4σ smaller
- Pantheon roughly agrees with Planck dipole and 'our' dipole

$z_{ m cut}$	Pantheon+	Pantheon
0.01	1576	1046

<ロト < @ ト < 三 ト < 三 ト 三 三 の < @ </p>

Pantheon+ z dependence

Position fixed

(b) Low redshift

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

(a) No cut

<ロト < @ ト < 三 ト < 三 ト 三 三 の < @ </p>

(a) z=0.025

(b) z=0.0375

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

(a) z=0.05

(b) z=0.1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで