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Anomalies in the CMB

P.A.R. Ade et al, Planck 2015 results, A&A,
594, A16, 2016.
N. Aghanim et al, Planck 2018 results, A&A
641, A7, 2020.

e Power suppression at angles 6 > 60°.

e Scale-dependent dipolar modulation of the temperature
spectrum.

e Preference for odd-parity correlations.

e Tension in the lensing amplitude A .




Power spectrum suppression
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Main message: Observations reveal an absence of correlations at high angles; a feature
that seems improbable according to ACDM.



Power suppression

Estimator to quantify total correlations in 6 € [60°, 180°]:

1/2
Sijp = /_ 1 [C(6)]?d(cos8).

S{ja>M a2 45000uK*, SP5 &~ 1500uK* — p-value< 1%.



Dipolar modulation



Observations show a scale-dependent hemispherical asymmetry in the CMB
(after subtraction of the Doppler shift).

This feature is observed at large-angular scales (small ¢ values).
It is sourced from correlations between ¢ and ¢ + 1 modes.

It is a feature not predicted by the ACDM model as it is associated with the break
of isotropy.



The p-value

e p-value: the probability of a realization to be at least as extreme as the
observation, given a theoretical model.
e p-values of each of the CMB anomalies studied here < 1%.
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Two interpretations:

1. We live in an extremely atypical realization of the ACDM model.

2. New physics is missing that makes these realizations more typical.
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Planck 2018 results. I.
Overview and the cosmological legacy of Planck

It is worth stressing that none of these so-called anoma-
lies are strongly inconsistent with the assumption of statistical
isotropy and Gaussianity, once one marginalises over a set of
similar tests. It would nevertheless be premature to completely
dismiss all the CMB anomalies as simple fluctuations of a pure
ACDM cosmology. since if any of the anomalies have a pri-
mordial origin, then their large-scale nature would suggest an
explanation rooted in fundamental physics. Thus it is worth ex-
ploring any models that might explain an anomaly (or even bet-
ter, multiple anomalies) naturally, or with very few free param-
eters. Given a theoretical prediction, new probes of indepen-
dent modes on similar scales (obtained through more sensitive
polarization measurements, lensing, Ly . or 21-cm studies for
example) would increase the significance of existing anomalies
and allow us to develop novel probes of early Universe physics.‘
So far the simplest models explaining a single anomaly are not
favoured over ACDM (see Planck Collaboration X 2018, and
references therein). Further investigation of these anomalies will
need to proceed on a case-by-case basis, and will be the subject
of future work.
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The bouncing model

e Matter: Scalar field Around the bounce:

e Geometry: FLRW flat geometry a(t) = as (1+ Re \"
- ® 12n
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The bouncing model

e Matter: Scalar field Around the bounce:
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Primordial power spectrum

o Mode-evolution: < “k(") + (k az(n)RTn)> Ok(n) = 0.

As(k/ks)"s™1, k > kg P
Pr ~ < As(k/kg)?, ki < k < kg P |
As(ki/ks)T(k/k)?, k < ki

102/

0% 10° 102 10— | 0 10
k/k.

e Modes of energy scale k < kg = ag+/Rg/6 are amplified by the cosmic bounce.
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Non-Gaussianity

®(x,t) = ¢°(x,t) + % / dPyd®zFy(y, 2)6%(x + y, t)9C(x, z, t)

ou() = 6§ + 3 | (;’:r;"sfm(m k— @)oS(6)65_ (1)
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Non-Gaussianity

®(x,t) = ¢°(x,t) + % / dPyd®zFy(y, 2)6%(x + y, t)9C(x, z, t)

ou() = 6§ + 3 | (;’:r;"sfm(m k— @)oS(6)65_ (1)

e Due to statistical homogeneity and isotropy: fyi(k1, ko) = fui (K1, ko, ki - 122)

e Non-Gaussianities generate three-point functions:
<¢k1¢k2cbk3> = (27’1’)35(k1 + ky + k3)B¢(k1, kg)

e Bispectrum: By (ki, ko) = faui(k1, ko) [P¢G(k1)P¢G(k2) +1+—>34+2+— 3].
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Non-Gaussianity

e Modified two-point functions:
<¢kl¢7;2> = (27T)35(3)(k2 — kl)P¢G(k1)+fNL(kl, 7/(2)% {P(’J‘)G(kl) —+ Poc(kz)} (Z)qc.
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Non-Gaussianity

Modified two-point functions:
<¢kl¢7;2> = (27T)35(3)(k2 — kl)P¢G(k1)+fNL(kl, 7/(2)% {P(’J‘)G(kl) —+ P()G(kQ)J ([)qc.

Temperature correlations and cosmological perturbations:
3 ~ A~ A~
agm=4r [ (gw’%(—l)ng(k) Y (k)®k, recall 6T (A) =3 asm Yem(A).
4,m

Modulated temperature correlations:
<agmaz,m,> = Czd@[/(smm/ aF (*1)’" Z AéyCl_m_’[/_’,m/.
L,M

e [ = 0: monopolar modulation, L = 1: dipolar modulation, L = 2: quadrupolar
modulation.
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Non-Gaussianity
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Our strategy

e Consider a profile fNL(kly ko, k3) = fNL,o e—a(kitkatks)/ke and fix fNL,o such that
Sf;’; has a p—value= 20%.

e Now explore how such an fyi affects (asmaj,,), and, consequently the anomalous
features.
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Power suppression
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Power suppression
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Power suppression
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Main message: Power suppression at larger angles is a more likely feature of the modulated correlations.
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Preference for odd-parity multipoles
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Parity-correlations
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Parity-correlations

even,odd

Deven 1
) Deven odd Em x) — 7
Dodd s o)

/
O (2,0

L¢+1)
2w

R (lmax) = G.

1.40

1.20

1.00) W Wturak N A L P A e

~ 0.80

0.60 P
4 ACDM
@ Planck

10 20 30 40 50

0.40

0.20

{max

20



Parity-correlations
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Parity-correlations
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Main message: Preference for odd-parity correlations is a more likely feature of the modulated spectrum.
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Dipolar modulation
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Dipolar modulation
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Dipolar modulation
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Dipolar modulation
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Main message: The modulated spectrum can generate a scale-dependent dipole in the

sky. 2



Constraints on Bispectrum?
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Constraints on Bispectrum?

[Delgado, Durrer, Pinto-Neto (2021)], [van Tent, Delgado, Durrer (2023)]

2 3 IS oo 1) ) 3 )
Beoyes = (= dxx? dky dko dk3 HAZ,(kj)M.(ij) (kikoks)3B(ki, ka, k3).
™ 0 0 0 0 / /
j=1

Result of the analysis

The non-Gaussian profile fyi (ki, k2, k3) = fnLo e—olkithkatks)/ks \ith fuLo ~ 103 is

excluded by Planck data (by more than 5¢).

24



However...

Bouncing models produce oscillations in fy(k1, k2, k3) [Agullo-Boilet-Sreenath (2018)].

Observable window

10t =

| fa (ks k)|

1072

1‘]7-‘3 L L

k/k,

which suppress significantly the projected bispectrum B(/¢1, {2, ¢3) making it compatible
with Planck data [Roshna-Sreenath (2023)].
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Take-home messages

e A cosmic bounce preceding the inflationary era can generate non-Gaussian correlations
between super-Hubble modes and modes at the longest wavelengths in the CMB.

26



Take-home messages

e A cosmic bounce preceding the inflationary era can generate non-Gaussian correlations
between super-Hubble modes and modes at the longest wavelengths in the CMB.

e These non-Gaussianities could potentially bias the correlations of CMB modes producing
features such as power suppression, preference for odd-parity correlations, and a dipolar
asymmetry. (See also [Ashtekar, Gupt, Sreenath (2021)] for the power suppression and
lensing anomalies).
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e Oscillations in the primordial non-Gaussianities are generated in bouncing scenarios and are
important to be considered.

[ Observing the “Planck” physics in the Planck data is a mind-blowing possibility! ]
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Additional Slides
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Temperature correlations

T(A)— T .
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Constraints on Bispectrum?
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Constraints on Bispectrum?

e [P. C. M. Delgado, R. Drurer, N. Pinto-Neto]:
“The cumulative signal-to-noise ratio of the bispectrum induced in the CMB from scales
¢ < 30 is larger than 10 in all cases of interest and therefore can, in principle, be detected
in the Planck data.”
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Constraints on Bispectrum?

e [P. C. M. Delgado, R. Drurer, N. Pinto-Neto]:
“The cumulative signal-to-noise ratio of the bispectrum induced in the CMB from scales
¢ < 30 is larger than 10 in all cases of interest and therefore can, in principle, be detected
in the Planck data.”

e [B. van Tent, P. C. M. Delgado, R. Drurer]:
“These models can help to mitigate the large-scale anomalies of the CMB by considering
substantial non-Gaussianities on very large scales, which decay exponentially on sub-
horizon scales... In this letter we show that bouncing models with parameters such that
they can significantly mitigate the large-scale anomalies of the CMB are excluded by the
Planck data with high significance of, depending on the specific model, 5.4, 6.4 or 14
standard deviations.”
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