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Anomalies in the CMB

P.A.R. Ade et al, Planck 2015 results, A&A,

594, A16, 2016.

N. Aghanim et al, Planck 2018 results, A&A

641, A7, 2020.

• Power suppression at angles θ ≥ 60o .

• Scale-dependent dipolar modulation of the temperature

spectrum.

• Preference for odd-parity correlations.

• Tension in the lensing amplitude AL.
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Power spectrum suppression
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Power suppression

Main message: Observations reveal an absence of correlations at high angles; a feature

that seems improbable according to ΛCDM.
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Power suppression

Estimator to quantify total correlations in θ ∈ [60o , 180o ]:

S1/2 =

∫ 1/2

−1
[C (θ)]2d(cos θ).

SΛCDM
1/2 ≈ 45000µK 4, Sobs

1/2 ≈ 1500µK 4 −→ p-value< 1%.
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Dipolar modulation

7



• Observations show a scale-dependent hemispherical asymmetry in the CMB

(after subtraction of the Doppler shift).

• This feature is observed at large-angular scales (small ℓ values).

• It is sourced from correlations between ℓ and ℓ+ 1 modes.

• It is a feature not predicted by the ΛCDM model as it is associated with the break

of isotropy.
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The p-value

• p-value: the probability of a realization to be at least as extreme as the

observation, given a theoretical model.

• p-values of each of the CMB anomalies studied here ≤ 1%.
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Two interpretations:

1. We live in an extremely atypical realization of the ΛCDM model.

2. New physics is missing that makes these realizations more typical.
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The bouncing model

• Matter: Scalar field

• Geometry: FLRW flat geometry

Around the bounce:

a(t) = aB

(
1 +

RB

12n

)n
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Primordial power spectrum

• Mode-evolution: d2υ̂k (η)
dη2

+
(
k2 − a2(η)R(η)

6

)
υ̂k(η) = 0.

PR ≈


AS (k/kB)

nS−1, k > kB

AS (k/kB)
q , kI < k ≤ kB

AS (kI/kB)
q(k/kI)

2, k ≤ kI

• Modes of energy scale k ≤ kB ≡ aB
√
RB/6 are amplified by the cosmic bounce.
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Non-Gaussianity

Φ(x , t) = ϕG(x , t) +
1

2

∫
d3yd3zFNL(y , z)ϕG(x + y , t)ϕG(x , z , t)

Φk(t) = ϕG
k (t) +

1

2

∫
d3q

(2π)3
fNL(q, k − q)ϕG

q (t)ϕ
G
k−q(t)

• Due to statistical homogeneity and isotropy: fNL(k1, k2) = fNL(k1, k2, k̂1 · k̂2).

• Non-Gaussianities generate three-point functions:

⟨Φk1
Φk2

Φk3
⟩ = (2π)3δ(k1 + k2 + k3)BΦ(k1, k2).

• Bispectrum: BΦ(k1, k2) = fNL(k1, k2)
[
PϕG(k1)PϕG(k2) + 1←→ 3 + 2←→ 3

]
.
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Non-Gaussianity

• Modified two-point functions:

⟨Φk1
Φ∗

k2
⟩ = (2π)3δ(3)(k2 − k1)PϕG(k1)+fNL(k1,−k2)

1
2

[
PϕG(k1) + PϕG(k2)

]
ϕqG .

• Temperature correlations and cosmological perturbations:

aℓ,m = 4π
∫

d3k
(2π)3 (−1)

ℓ∆ℓ(k)Y
∗
ℓm(k̂)Φk , recall δT (n̂) =

∑
ℓ,m

aℓmYℓm(n̂).

• Modulated temperature correlations:

⟨aℓma∗ℓ′m′⟩ = Cℓδℓℓ′δmm′ + (−1)m′ ∑
L,M

ALM
ℓℓ′ Cℓ,m,ℓ′,−m′ .

• L = 0: monopolar modulation, L = 1: dipolar modulation, L = 2: quadrupolar

modulation.
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Non-Gaussianity
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Our strategy

• Consider a profile fNL(k1, k2, k3) = fNL,o e
−α(k1+k2+k3)/kB and fix fNL,o such that

Sobs
1/2 has a p−value= 20%.

• Now explore how such an fNL affects ⟨aℓma∗ℓm⟩, and, consequently the anomalous

features.
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Power suppression
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Power suppression

Cmod
ℓ = Cℓδℓℓ′δmm′ + (−1)m

′ ∑
L,M

ALM
ℓℓ′ Cℓ,m,ℓ′,−m′

Main message: Power suppression at larger angles is a more likely feature of the modulated correlations.
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Preference for odd-parity multipoles
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Parity-correlations

RTT(ℓmax) =
Deven

Dodd
, Deven,odd(ℓmax) =

1

ℓtot

even,odd∑
ℓ∈[2,ℓmax]

ℓ(ℓ+ 1)

2π
Cℓ.

Main message: Preference for odd-parity correlations is a more likely feature of the modulated spectrum.
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Dipolar modulation
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Dipolar modulation

⟨aℓma∗ℓ′m′⟩ = Cℓδℓℓ′δmm′ + (−1)m
′ ∑
L,M

ALM
ℓℓ′ Cℓ,m,ℓ′,−m′ .

Main message: The modulated spectrum can generate a scale-dependent dipole in the

sky.
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Constraints on Bispectrum?
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Constraints on Bispectrum?

[Delgado, Durrer, Pinto-Neto (2021)], [van Tent, Delgado, Durrer (2023)]

Bℓ1ℓ2ℓ3 =

(
2

π

)3 ∫ ∞

0
dxx2

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

 3∏
j=1

∆ℓj (kj )jℓj (kjx)

 (k1k2k3)
3B(k1, k2, k3).

Result of the analysis

The non-Gaussian profile fNL(k1, k2, k3) = fNL,o e
−α(k1+k2+k3)/kB , with fNL,o ∼ 103 is

excluded by Planck data (by more than 5σ).
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However...

Bouncing models produce oscillations in fNL(k1, k2, k3) [Agullo-Boilet-Sreenath (2018)].

which suppress significantly the projected bispectrum B(ℓ1, ℓ2, ℓ3) making it compatible

with Planck data [Roshna-Sreenath (2023)].
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Take-home messages

• A cosmic bounce preceding the inflationary era can generate non-Gaussian correlations

between super-Hubble modes and modes at the longest wavelengths in the CMB.

• These non-Gaussianities could potentially bias the correlations of CMB modes producing

features such as power suppression, preference for odd-parity correlations, and a dipolar

asymmetry. (See also [Ashtekar, Gupt, Sreenath (2021)] for the power suppression and

lensing anomalies).

• Oscillations in the primordial non-Gaussianities are generated in bouncing scenarios and are

important to be considered.

Observing the “Planck” physics in the Planck data is a mind-blowing possibility!
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Additional Slides
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Temperature correlations

‘

δT (n̂) =
T (n̂)− T̄

T̄
=

∑
ℓ,m

aℓ,mYℓ,m, ⟨aℓ,ma∗ℓ′,m′⟩ = Cℓδℓ′δm′m.

Cℓ =
2

π

∫
dkk2∆ℓ(k)Pϕ(k)

C (θ) ≡ ⟨δT (n̂)δT (n̂′)⟩ = 1

4π

∑
ℓ

(2ℓ+ 1)CℓPℓ(cos θ), θ ≈
π

ℓ
.
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Constraints on Bispectrum?

• [P. C. M. Delgado, R. Drurer, N. Pinto-Neto]:

“The cumulative signal-to-noise ratio of the bispectrum induced in the CMB from scales

ℓ < 30 is larger than 10 in all cases of interest and therefore can, in principle, be detected

in the Planck data.”

• [B. van Tent, P. C. M. Delgado, R. Drurer]:

“These models can help to mitigate the large-scale anomalies of the CMB by considering

substantial non-Gaussianities on very large scales, which decay exponentially on sub-

horizon scales... In this letter we show that bouncing models with parameters such that

they can significantly mitigate the large-scale anomalies of the CMB are excluded by the

Planck data with high significance of, depending on the specific model, 5.4, 6.4 or 14

standard deviations.”
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