Dynamics of Extended Bodies with **Spin-Induced Quadrupole**

Misbah Shahzadi, Georgios Lukes-Gerakopoulos Astronomical Institute of the Czech Academy of Sciences

NEB-21, Corfu 1-4, September, 2025

Motivation

- How can we define an extended body in a curved spacetime?
- How can we set a reference point in an extended body?
- Do different choices of a reference point describe the same physical body?
- How does the spin and quadrupole structure affect the motion of the body?

Mathisson's gravitational skeleton

Recipe:

- Test body in curved spacetime.
- Multipole expansion of the stress-energy tensor of the body.
- Expansion truncation at a certain multipole:
 - \triangleright zero order: mass monopole P^{μ} .
 - first order: spin-dipole $S^{\mu\nu}$.
 - second order: quadrupole $J^{\mu\nu\kappa\lambda}$.
 - ▶ ...

Figure: The worldtube of an extended body following the red worldline. $\Sigma(\tau,u)$ is the spacelike hypersurface generated by all geodesics orthogonal to the timelike vector u^μ

• F. Costa, & J. Natario: *Equations of Motion in Relativistic Gravity*, pp 215-258 (2015). arXiv:2505.16783v2.

Mathisson-Papapetrou-Dixon (MPD) equations

$$\frac{\mathrm{Dp}^{\mu}}{\mathrm{d}\tau} = 0 - \frac{1}{2} R^{\mu}_{\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} J^{\nu\rho\beta\alpha} \nabla^{\mu} R_{\nu\rho\beta\alpha},$$
$$\frac{\mathrm{DS}^{\mu\nu}}{\mathrm{d}\tau} = 2 p^{[\mu} u^{\nu]} + \frac{4}{3} R_{\alpha\beta\rho} {}^{[\mu} J^{\nu]\rho\alpha\beta}.$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974):
- EoM for p^{α} and $S^{\alpha\beta}$ follow from theory!
- Spin-supplementary condition (SSC):

momentum p^{μ}

spin / dipole $S^{\mu \nu}$

quadrupole $J^{\mu\nu\alpha\beta}$, ...

 $T^{\mu\nu}_{\; : \nu} = 0 \Rightarrow \mathsf{EoM}$

$$S^{\mu\nu}V_{\mu} = 0, \ V^{\mu}V_{\mu} = -1$$

Mathisson-Papapetrou-Dixon (MPD) equations

$$\frac{\mathrm{Dp}^{\mu}}{\mathrm{d}\tau} = 0 - \frac{1}{2} R^{\mu}_{\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} J^{\nu\rho\beta\alpha} \nabla^{\mu} R_{\nu\rho\beta\alpha},$$
$$\frac{\mathrm{DS}^{\mu\nu}}{\mathrm{d}\tau} = 2 p^{[\mu} u^{\nu]} + \frac{4}{3} R_{\alpha\beta\rho} {}^{[\mu} J^{\nu]\rho\alpha\beta}.$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (\sim 1974):
- EoM for p^{α} and $S^{\alpha\beta}$ follow from theory!
- Spin-supplementary condition (SSC):

momentum p^{μ}

spin / dipole $S^{\mu
u}$

quadrupole $J^{\mu\nu\alpha\beta}$, ...

 $T^{\mu\nu}_{;\nu} = 0 \Rightarrow \mathsf{EoM}$

$$S^{\mu\nu}V_{\mu} = 0, \ V^{\mu}V_{\mu} = -1$$

Conserved Quantities:

• For a Killing vector field
$$\xi^\mu$$
: $C(\xi) = p_\mu \xi^\mu + \frac{1}{2} \, S^{\mu\nu} \nabla_\mu \xi_\nu$

• Neglecting
$$J^{\mu\nu\alpha\beta}$$
 etc.: mass: $\mu=\sqrt{-p_{\mu}p^{\mu}}$ or $m=-u^{\mu}p_{\mu}$ (SSC dep.)

spin-length:
$$S=\sqrt{rac{1}{2}\,S_{\mu\nu}S^{\mu
u}}$$

Non-spinning & spinning test body motion

Non-spinning

- Regular motion
- Integrable
- Geodesic motion
- No spin—orbit coupling

Spinning

- Chaotic motion
- Non-integrable
- Non-geodesic motion
- Spin-orbit coupling

Pole-dipole

ullet μ conserved

Pole-dipole-quadrupole

- \bullet μ not conserved
- Extra spin²/curvature couplings

Spin-induced quadrupole and SSCs in Kerr background

Spin-induced quadrupole moment

$$J^{\alpha\beta\gamma\delta} = -3V^{[\alpha}Q^{\beta][\gamma}V^{\delta]}, \qquad Q^{\alpha\beta} = k \, S^{\alpha}_{\ \gamma} \, S^{\beta\gamma}.$$

- For black holes: k=1
- \bullet For neutron stars: $4\lesssim k\lesssim 6$

Fixing the center of mass

To fix the center of mass, we use two standard SSCs:

- Mathisson-Pirani (MP): $u_{\mu}S^{\mu\nu}=0$
- Tulczyjew–Dixon (TD): $p_{\mu}S^{\mu\nu}=0$

- M. Mathisson: Acta Phys. Polonica, 6, 163 (1937).
- W. Tulczyjew: Acta Phys. Pol., 18, 393 (1959)

Circular equatorial orbits (Kerr BH)

- Equatorial plane, i.e., $\theta = \frac{\pi}{2}, p^{\theta} = 0$
- Circular orbits, i.e., $p^r = u^r = 0$
- $u^t \rightarrow u^\alpha u_\alpha = -1; p^t \rightarrow p^\alpha p_\alpha = -\mu^2$
- Aligned spin:

$$S^{tr} = -S\sqrt{-\frac{g_{\theta\theta}}{g}} V_{\phi} = -S^{rt},$$

$$S^{r\phi} = -S\sqrt{-\frac{g_{\theta\theta}}{g}} V_{t} = -S^{\phi r}.$$

- Non-trivial MPD Eqs: $\frac{\mathrm{d}p^r}{\mathrm{d}\tau} = \frac{\mathrm{d}S^{t\phi}}{\mathrm{d}\tau} = 0.$
- Orbital frequency:

$$\Omega = \frac{u^{\phi}}{u^t} = \Omega_n \sigma^n + \mathcal{O}(\sigma^7), \quad n = 0, \cdots, 6.$$

Orbital frequency (Ω_{ϕ}) under TD and MP SSCs

$\hat{\Omega}_n$	TD SSC	MP SSC
$\mathcal{O}(\sigma^0)$	$\frac{\frac{1}{\hat{a}\pm\sqrt{\hat{r}^3}}}{3\left(\pm\hat{a}-\sqrt{\hat{r}}\right)}$	$\frac{1}{\hat{a}\pm\sqrt{\hat{r}^3}}$ $3(\pm\hat{a}-\sqrt{\hat{r}})$
$\mathcal{O}(\sigma^1)$	$\frac{3\left(\pm\hat{a}-\sqrt{\hat{r}}\right)}{2\sqrt{\hat{r}}\left(\hat{a}\pm\sqrt{\hat{r}^3}\right)^2}$	$\frac{3\left(\pm\hat{a}-\sqrt{\hat{r}}\right)}{2\sqrt{\hat{r}}\left(\hat{a}\pm\sqrt{\hat{r}^3}\right)^2}$
$\mathcal{O}(\sigma^2)$	$\hat{\Omega}_2(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_2(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^3)$	$\hat{\Omega}_{3,TD}(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{3,MP}(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^4)$	$\hat{\Omega}_{4,TD}(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{4,MP}(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^5)$	$\hat{\Omega}_{5,TD}(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{5,MP}(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^6)$	$\hat{\Omega}_{6,TD}(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{6,MP}(\hat{r},\hat{a},\hat{k})$

Table: Power series expansion coefficients for orbital frequency $\hat{\Omega}_{\pm}$ of spinning test body with spin-induced quadrupole.

Centroid shift (radial shift)

Shifting from one centroid z^{α} to another centroid \tilde{z}^{α} :

• Radial shift:
$$\delta z^{\nu} = \frac{\tilde{p}_{\mu}S^{\mu\nu}}{\tilde{\mu}^2}$$
.

For
$$\hat{k} = 1$$
:

$$\hat{\Omega}_{4,\mathsf{TD}}^{'}=\hat{\Omega}_{4,\mathsf{MP}}$$
,

$$\quad \bullet \ \, \hat{\Omega}_{5,\mathsf{TD}}' = \hat{\Omega}_{5,\mathsf{MP}} \text{,} \\$$

$$\hat{\Omega}_{6,\mathsf{TD}}' \neq \hat{\Omega}_{6,\mathsf{MP}}.$$

$\hat{\Omega}_n$	TD SSC	MP SSC
$\mathcal{O}(\sigma^0)$	$\frac{1}{\hat{a}\pm\sqrt{\hat{r}^3}}$ $3(\pm\hat{a}-\sqrt{\hat{r}})$	$\frac{1}{\hat{a}\pm\sqrt{\hat{r}^3}}$ $3(\pm\hat{a}-\sqrt{\hat{r}})$
$\mathcal{O}(\sigma^1)$	$\frac{3\left(\pm\hat{a}-\sqrt{\hat{r}}\right)}{2\sqrt{\hat{r}}\left(\hat{a}\pm\sqrt{\hat{r}^3}\right)^2}$	$\frac{3\left(\pm\hat{a}-\sqrt{\hat{r}}\right)}{2\sqrt{\hat{r}}\left(\hat{a}\pm\sqrt{\hat{r}^3}\right)^2}$
$\mathcal{O}(\sigma^2)$	$\hat{\Omega}_2(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_2(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^3)$	$\hat{\Omega}_{3,MP}(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{3,MP}(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^4)$	$\hat{\Omega}_{4,TD}'(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{4,MP}(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^5)$	$\hat{\Omega}_{5,TD}'(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{5,MP}(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^6)$	$\hat{\Omega}_{6,TD}'(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{6,MP}(\hat{r},\hat{a},\hat{k})$

Table: Power series expansion coefficients for orbital frequency $\hat{\Omega}_{\pm}$ (after radial shifting).

Extended bodies with spin-induced quadrupole

Centroid shift (both radial and spin shifts)

Shifting from one centroid z^{α} to another centroid \tilde{z}^{α} :

• Radial shift:
$$\delta z^{\nu} = \frac{\tilde{p}_{\mu}S^{\mu\nu}}{\tilde{\mu}^2}$$

Spin-shift:

$$\dot{\tilde{S}}^{\mu\nu} = S^{\mu\nu} + p^{\mu}\delta z^{\nu} - p^{\nu}\delta z^{\mu}.$$

For $\hat{k} = 1$:

$$\hat{\Omega}_{4,\mathsf{TD}}^{\prime\prime} = \hat{\Omega}_{4,\mathsf{MP}},$$

$$\quad \bullet \ \, \hat{\Omega}_{5,\mathsf{TD}}^{\prime\prime} \neq \hat{\Omega}_{5,\mathsf{MP}}. \\$$

$\hat{\Omega}_n$	TD SSC	MP SSC
$\mathcal{O}(\sigma^0)$	$\frac{\frac{1}{\hat{a}\pm\sqrt{\hat{r}^3}}}{3\left(\pm\hat{a}-\sqrt{\hat{r}}\right)}$	$\frac{1}{\hat{a}\pm\sqrt{\hat{r}^3}}$ $3(\pm\hat{a}-\sqrt{\hat{r}})$
$\mathcal{O}(\sigma^1)$	$\frac{3\left(\pm\hat{a}-\sqrt{\hat{r}}\right)}{2\sqrt{\hat{r}}\left(\hat{a}\pm\sqrt{\hat{r}^3}\right)^2}$	$\frac{3\left(\pm\hat{a}-\sqrt{\hat{r}}\right)}{2\sqrt{\hat{r}}\left(\hat{a}\pm\sqrt{\hat{r}^3}\right)^2}$
$\mathcal{O}(\sigma^2)$	$\hat{\Omega}_2(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_2(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^3)$	$\hat{\Omega}_{3,MP}(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{3,MP}(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^4)$	$\hat{\Omega}_{4,TD}''(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{4,MP}(\hat{r},\hat{a},\hat{k})$
$\mathcal{O}(\sigma^5)$	$\hat{\Omega}_{5,TD}''(\hat{r},\hat{a},\hat{k})$	$\hat{\Omega}_{5,MP}(\hat{r},\hat{a},\hat{k})$

Table: Power series expansion coefficients for orbital frequency $\hat{\Omega}_{\pm}$ of spinning test body (after both radial and spin shifts).

Summary & Future work

- The orbital frequencies under the TD and MP SSCs are equivalent up to the quadratic order in spin σ , i.e., the terms up to $\mathcal{O}(\sigma^2)$ are identical.
- When the centroid position corrections are applied, for the case of BHs ($\hat{k}=1$), the orbital frequencies under the TD and MP SSCs are equivalent up to order five in spin σ .
- When the spin corrections are applied, for the case of BHs, the orbital frequencies under the TD and MP SSCs are equivalent up to order four in spin σ .

 We are working on modelling the gravitational waveforms from a spinning secondary with spin-induced quadrupole.

Thank you for your attention.

• M. Shahzadi, G. Lukes-Gerakopoulos, M. Kološ: *Circular equatorial orbits of extended bodies with spin-induced quadrupole around a Kerr black hole: Comparing spin-supplementary conditions.* Phys. Rev. D: arXiv:2505.16783v2.