

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

Accelerating Growth

Sensitivity $\sim \frac{1}{R}$

of detections $\sim R^3$

Inspiral: two distinct black holes orbiting each other

LVC (arxiv:1602.03837)

The signal

Merger: two black holes combining

Ringdown: a single perturbed black hole ringing

Black hole Masses

LVC w/ KC (arxiv:2508.18083)

Where do LIGO's black holes come from?

VS

Isolated binary evolution

Dynamical formation

Credit: Carl Rodriguez

Mandel+ (arxiv:1806.05820)

Actually...

Isolated binary formation

Common envelope

Stable mass transfer

Population III stars

Chemically homogeneous evolution

Wide binaries + flybys

Secular evolution of triples/ quadruples

> Triples with common envelope

Globular clusters

Nuclear clusters

Open clusters

Young massive clusters

mergers

Active galactic nuclei

Dynamic formation

Primordial black holes

Dark matter

Environments

Non-astrophysical

Where do LIGO's black holes come from?

VS

Isolated binary evolution

Dynamical formation

Credit: Carl Rodriguez

Mandel+ (arxiv:1806.05820)

Black hole Spins

Where do LIGO's black holes come from?

Isolated binary evolution

Dynamical formation

Anti-aligned and precessing spins reveal a dynamical origin

dit: Carl Rodriguez

Mandel+ (arxiv:1806.05820)

Conclusions

Gravitational waves carry information about the spins of merging black holes that can reveal their astrophysical properties.

The imprint of spins on signals is extremely subtle and sensitive to the system configuration, especially for the majority of signals that are merger-dominated.

Spin inference is strongly affected by noise imperfections

Most black holes have low spins with a range of misalignments, but combining many weakly informative measurements is subject to hard-to-diagnose model dependence

Measurement precision

Masses >> Aligned spins >> Precessing spins

(Frequency >> Length >> Modulation)

Observations

Forward models

 $(m_1, m_2, \vec{S}_1, \vec{S}_2, \ldots)$

No missing physics...

...but also little
physical intuition
especially for the merger

GW190521: A heavy black hole binary at $150\,M_\odot$

low frequency <-> short signal <-> merger-dominated <-> high mass

Reconstructed - gravitational-wave signal

GW231123: The heaviest black hole binary at $240\,M_\odot$

Spin measurement

high mass+spin->
cluster/hierarchical
origin?

Inference

Robust inference includes understanding the morphological imprint of precession on the signal

Precession Morphology

suppression of the final pre-merger cycle

Miller+ w/KC (arxiv:2310.01544)

Conclusions

Gravitational waves carry information about the spins of merging black holes that can reveal their astrophysical properties.

The imprint of spins on signals is extremely subtle and sensitive to the system configuration, especially for the majority of signals that are merger-dominated.

Spin inference is strongly affected by noise imperfections

Most black holes have low spins with a range of misalignments, but combining many weakly informative measurements is subject to hard-to-diagnose model dependence

Subtle measurements vs Systematics

LVK w/KC (arxiv:2111.03606)

Detector glitches

20 binary black hole mergers out of ~90 have overlapped with glitches...

...including the remaining two signals with evidence for negative-aligned or precessing spins

GW200129

GW191109

Targeted glitch model

Analysis by Rhiannon Udall

GW191109

Phenomenological glitch model

Analysis by Sophie Hourihane

Conclusions

Gravitational waves carry information about the spins of merging black holes that can reveal their astrophysical properties.

The imprint of spins on signals is extremely subtle and sensitive to the system configuration, especially for the majority of signals that are merger-dominated.

Spin inference is strongly affected by noise imperfections

Most black holes have low spins with a range of misalignments, but combining many weakly informative measurements is subject to hard-to-diagnose model dependence

Black hole population:

Aligned spin No aligned spin

Spins are not isotropic, multiple origin scenarios?

LVK w/KC (arxiv:2508.18083)

GWTC-3.0:70 BBHs 2.5GWTC-4.0:160 BBHs 2.01.51.0 0.00.20.40.60.81.0Spin magnitude LVK w/KC (arxiv:2508.18083)

Black hole population: Spin magnitude

Spins are not all zero

Spins are not all maximal

Most black holes have low spins

Do most black holes have zero spin?

Stellar evolution predicts vanishingly small black hole spins.
Alternative: inefficient angular momentum transport, hierarchical mergers...

Do most black holes have zero spin?

No

Combining ~100 mostly
uninformative measurements to
assess something of measure zero is
technically challenging

Model assessment is more challenging for weakly informative measurements

Black hole population: Spin direction

Spins are not all aligned

There is a wide range of misalignement

More spins are positively-aligned than negatively-aligned

Conclusions

Gravitational waves carry information about the spins of merging black holes that can reveal their astrophysical properties.

The imprint of spins on signals is extremely subtle and sensitive to the system configuration, especially for the majority of signals that are merger-dominated.

Spin inference is strongly affected by noise imperfections

Most black holes have low spins with a range of misalignments, but combining many weakly informative measurements is subject to hard-to-diagnose model dependence

The next steps

LVC (G2002127 Tech Doc)

