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Classical relativity theorems

▶ Singularity theorems: prove geodesic incompleteness [Penrose, 1964],
[Hawking, 1966], [Hawking, Penrose, 1970]

▶ Black hole area theorem: proves that the black hole event horizon can never
decrease [Hawking, 1971]

▶ Topology theorem: proves that cross sections of the event horizon for
asymptotically flat black holes are topologically 2-spheres [Hawking, 1971]

▶ Penrose inequality: relation between the ADM and the area of any cross section
of the black hole event horizon [Penrose, 1973]
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Classical relativity theorems

▶ Singularity theorems: prove geodesic incompleteness [Penrose, 1964],
[Hawking, 1966], [Hawking, Penrose, 1970]

▶ Black hole area theorem: proves that the black hole event horizon can never
decrease [Hawking, 1971]

▶ Topology theorem: proves that cross sections of the event horizon for
asymptotically flat black holes are topologically 2-spheres [Hawking, 1971]

▶
Penrose inequality: relation between the ADM and the area of any cross section
of the black hole event horizon [Penrose, 1973]

All these theorems use classical energy conditions in their assumptions.
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Energy conditions

Restrictions on contractions of the stress-energy tensor that encode “physi-
cal” properties of matter such as the positivity of energy.

▶ Dominant energy condition: DEC
▶ Null energy condition: NEC

Name Physical Geometric Perfect fluid
DEC Tµνt

µξν ≥ 0 Gµνt
µξν ≥ 0 ρ ≥ |P|

NEC TµνU
µUν ≥ 0 RµνU

µUν ≥ 0 ρ+ P ≥ 0

tµ and ξµ: co-oriented timelike vectors, Uµ: null vector

...
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Semiclassical gravity

Question
Do these theorems generalize to semiclassical gravity?

Semiclassical gravity

Quantum fields generating a classical curved background:

8πG⟨:Tµν :⟩ψ = Gµν

▶ Approximate equation with certain regime of validity
▶ Very few cases where we actually know solutions exist

Positivity of the energy density is in general incompatible with quantum field
theory. There is a nonzero probability for both positive and negative mea-
surement values, so the spectrum of observables extends into the negative
half-line. All pointwise conditions are violated in that context. [Epstein,
Glaser, Jaffe, 1965]
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Semiclassical theorems

General strategy:

▶ Step 1: Replace the pointwise condition by an average one and prove the
theorem ∫

γ

f 2RµνU
µUν ≥ −(bound)

▶ Step 2: Find a condition obeyed by quantum fields with the same kind of bound∫
γ

f 2⟨:Tµν :UµUν⟩ψ ≥ −(bound)

▶ Step 3: Use the semiclassical Einstein equation

8πG⟨:Tµν :UµUν⟩ψ = RµνU
µUν
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Weakened energy conditions

Question
What kind of conditions do quantum fields obey?

QFT
Quantum energy inequalities (QEIs) introduce a restriction on the possible magnitude
and duration of any negative energy densities within a quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime) [Ford,
Roman, 1995], [Fewster, Eveson, 1998]
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Weakened energy conditions

Question
What kind of conditions do quantum fields obey?

QFT
Quantum energy inequalities (QEIs) introduce a restriction on the possible magnitude
and duration of any negative energy densities within a quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)∫
dt f 2⟨:Tµνtµtν :⟩ψ ≥ − 1

16π2

∫
f ′′(t)2dt

[Ford, Roman, 1995], [Fewster, Eveson, 1998]
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Weakened energy conditions

Question
What kind of conditions do quantum fields obey?

QFT
Quantum energy inequalities (QEIs) introduce a restriction on the possible magnitude
and duration of any negative energy densities within a quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)

1

t0

∫
dt f 2⟨:Tµνtµtν :⟩ψ ≥ −C

t40

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

Weakened condition inspired by QEIs∫
f 2RµνU

µUν dt ≥ −Qm∥f (m)∥2 − Q0∥f ∥2
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The original Penrose inequality
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The Penrose argument

▶ Everywhere on M and for all null vectors Uµ

RµνU
µUν ≥ 0

▶ M contains a trapped surface T so a singularity forms

▶ We assume Weak Cosmic Censorship: the singularity is behind an event horizon
▶ The area theorem holds so the event horizon of a black hole is always non-

decreasing
▶ The black hole spacetime settles to a Kerr black hole so

A ≤ AKerr ,
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The Penrose argument

The Bondi mass
The mass of a gravitating system defined in terms of the asymptotic behavior at null
infinity.

The ADM mass
The mass of a gravitating system defined in terms of the asymptotic behavior at
spatial infinity.

AKerr = 8πMKerr

(
MKerr +

√
M2

Kerr − a2
)

≤ 16πM2
Kerr ,

16πM2
Kerr = 16πM2

Bondi ≤ 16πm2
ADM .

mADM ≥
√

A

16π

...
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The initial data formulation

Use properties of an initial data set instead of the whole spacetime.

▶ Consider a time-orientable spacetime (M
n
, g) satisfying the Einstein equations

and initial data set (Md , g ,K)

▶ The DEC holding in M̄ guarantees that

µ ≥ |J|g along M,

...
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The initial data formulation

Use properties of an initial data set instead of the whole spacetime.

▶ Consider a time-orientable spacetime (M
n
, g) satisfying the Einstein equations

and initial data set (Md , g ,K)

▶ The DEC holding in M̄ guarantees that

µ︸︷︷︸
Energy density

≥ |J|g︸︷︷︸
current energy-momentum

along M,

Theorem
Let (M, g ,K), be a complete spherically symmetric, asymptotically flat initial data
set such that ∂M is an outermost marginally outer trapped surface (MOTS). If the
DEC holds

mADM ≥ 1

2

(
|∂M|
ωd−1

) d−2
d−1

.
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The generalizations

Two generalizations

1. Initial data formulation of the Penrose inequality with an average DEC

2. Using the previous formulation and a condition inspired by QEIs to acquire a
Penrose inequality for evaporating black holes

Theorem [Hafemann, E-AK, 2025]

Let (M, g ,K), be a complete spherically symmetric, asymptotically flat initial data
set such that ∂M is an outermost MOTS. If the average dominant energy condition
(ADEC) holds ∫ ∞

r0

rn−1 (µ− |J|g ) dr ≥ 0,

then

mADM ≥ 1

2

(
|∂M|
ωd−1

) d−2
d−1

.
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Focusing theorem

A focal point on γ is a point where a causal geodesic no longer extremizes the action
integral.

Energy of action integral

E [γ] =
1

2

∫ ℓ

0

g(γ′(λ), γ′(λ))dλ

The Hessian

H[V ] ≡ d2E [γs ]

ds2

∣∣∣
s=0

=

∫ ℓ

0

[
(∇UVµ)(∇UV

µ) + Rµναβ

tangent︷︸︸︷
Uµ V ν︸︷︷︸

variation

V αUβ
]
dλ− UµII

µ(V ,V )
∣∣∣
γ(0)

...
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Focusing theorem

Let ei with i = 1, . . . , n − 2 be an orthonormal basis of Tγ(0)P , and parallel
transport them along γ to generate {Ei}i=1,...,n−2. Then, take f a smooth function
with f (0) = 1 and f (ℓ) = 0 and sum over i

n−2∑
i=1

H(fEi , fEi ) = −
∫ ℓ

0

(
(n − 2)f ′2(λ)− f 2RµνU

µUν
)
dλ−(n−2)f 2UµH

µ
∣∣∣
γ(0)

Hµ is the mean normal curvature vector field of P

Condition for the existence of focal points

▶ No focal point before q: H[V ] > 0 for all V
▶ Focal point before q: H[V ] < 0 for some V

▶ H[V ] = 0 marginal case

...
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The sufficiently trapped surface

Condition for the formation of a focal point

UµH
µ
∣∣
γ(0)

≤ −Jℓ[f ] = − 1

n − 2

∫ ℓ

0

(
(n − 2)f ′(λ)2 − f (λ)2RµνU

µUν
)
dλ

Singularity theorem

Geodesic incompleteness for sufficiently trapped surface:

UµH
µ
∣∣
γ(0)

≤ −ν ≡ − inf
f
Jℓ[f ]

[Fewster, E-AK, 2019]

Area theorem
The sufficiently trapped surface is always inside the event horizon. [E-AK, Sacchi,
2023]
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Penrose inequality for evaporating black holes

Theorem [Hafemann, E-AK, 2025]

(i) (M
n+1

, g) is a spherically symmetric, strongly asymptotically predictable with
a sufficiently trapped surface T .

(ii) Let M1 and M2 be asymptotically flat partial Cauchy surfaces for the globally
hyperbolic region such that M1 ⊂ I−(M2).

Let H0 ≡ H ∩M1 and Hs ≡ H ∩M2 . If M2 is an initial data set satisfying the
ADEC and then

mADM ≥ 1

2

(
Amin(T )

ωn−2

) n−3
n−2

exp

(
− 1

2(n − 2)

∫ s

0

ν(λ)dλ

)
.

where Amin(T ) is the minimum area required to enclose the sufficiently trapped
surface T .
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Application

We can replace the “sufficiently trapped surface” with

∫ ℓ

0

f (λ)2

ρ︷ ︸︸ ︷
RµνU

µUν dλ ≥ −Qm∥f (m)∥2 − Q0∥f ∥2

and ρ ≥ ρ0 for [0, ℓ0]. Then we can compute ν(ℓ, ℓ0,Qm,Q0, ρ0).
For m = 1 and taking ℓ → ∞

mADM ≥
√

Amin(T )

16π
exp

(
−1

4
νopt · s

)
,

where νopt = νopt(Q0,Q1, ρ0)

The more negative energy allowed and the further apart the initial data sets
lie, the more this inequality differs from the original one.
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The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in four
dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]∫

dλ⟨:Tµν :UµUν⟩ψf 2(λ) ≥ −4B

GN
∥f ′∥2

...
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The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in four
dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]∫

dλ⟨:Tµν :UµUν⟩ψf 2(λ) ≥ −4B

GN
∥f ′∥2

What is B?
Numerical constant that expresses the scale of the UV cutoff

▶ ℓUV ≈ Planck length → B order 1→ A lot of negative energy allowed
▶ ℓUV ≫ Planck length → B small → A little negative energy allowed
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The smeared null energy condition
Smeared null energy condition (SNEC) for the minimally coupled scalar field in four
dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]∫

dλ⟨:Tµν :UµUν⟩ψf 2(λ) ≥ −4B

GN
∥f ′∥2

Semiclassical Einstein equation

8πGN⟨:Tµν :UµUν⟩ψ = RµνU
µUν
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Interpretation

‘Global’ form of inequalities

mADM ≥ 1

2

√
|H ∩M0|

16π
exp

(
−1

4
νopt · s

)
, mADM ≥

√
A

16π

Problem: the event horizon is unknown before the full evolution.

mADM ≥
√

Amin(T )

16π
exp

(
−1

4
νopt · s

)
,

Use: if the inequality is not satisfied for a given QEI, then the failure can be
attributed to the non-formation of the event horizon.
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Conclusions

▶ Proved versions of the Penrose inequality with average energy conditions
▶ Is there a relation between QEIs and the SDEC? Could it be applicable for

quantum fields?
▶ Relationship with positive mass theorem?
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