

Outline

Introduction and motivation

The original Penrose inequality

Penrose inequality for evaporating black holes

Based on 2504.19794 with Eduardo Hafemann.

Introduction and motivation

Classical relativity theorems

- Singularity theorems: prove geodesic incompleteness [Penrose, 1964], [Hawking, 1966], [Hawking, Penrose, 1970]
- Black hole area theorem: proves that the black hole event horizon can never decrease [Hawking, 1971]
- Topology theorem: proves that cross sections of the event horizon for asymptotically flat black holes are topologically 2-spheres [Hawking, 1971]
- ▶ Penrose inequality: relation between the ADM and the area of any cross section of the black hole event horizon [Penrose, 1973]

Classical relativity theorems

- Singularity theorems: prove geodesic incompleteness [Penrose, 1964], [Hawking, 1966], [Hawking, Penrose, 1970]
- Black hole area theorem: proves that the black hole event horizon can never decrease [Hawking, 1971]
- Topology theorem: proves that cross sections of the event horizon for asymptotically flat black holes are topologically 2-spheres [Hawking, 1971]
- Penrose inequality: relation between the ADM and the area of any cross section of the black hole event horizon [Penrose, 1973]

- Singularity theorems: prove geodesic incompleteness [Penrose, 1964], [Hawking, 1966], [Hawking, Penrose, 1970]
- Black hole area theorem: proves that the black hole event horizon can never decrease [Hawking, 1971]
- Topology theorem: proves that cross sections of the event horizon for asymptotically flat black holes are topologically 2-spheres [Hawking, 1971]
- Penrose inequality: relation between the ADM and the area of any cross section of the black hole event horizon [Penrose, 1973]

All these theorems use classical energy conditions in their assumptions.

Energy conditions

Restrictions on contractions of the stress-energy tensor that encode "physical" properties of matter such as the positivity of energy.

Energy conditions

Restrictions on contractions of the stress-energy tensor that encode "physical" properties of matter such as the positivity of energy.

- ▶ Dominant energy condition: DEC
- ► Null energy condition: NEC

Energy conditions

Restrictions on contractions of the stress-energy tensor that encode "physical" properties of matter such as the positivity of energy.

- Dominant energy condition: DEC
- ► Null energy condition: NEC

Name	Physical	Geometric	Perfect fluid
DEC	$T_{\mu u}t^{\mu}\xi^{ u}\geq 0$	$G_{\mu u}t^{\mu}\xi^{ u}\geq 0$	$\rho \ge P $
NEC	$T_{\mu\nu}U^{\mu}U^{\nu}\geq 0$	$R_{\mu\nu}U^{\mu}U^{ u}\geq 0$	$\rho + P \ge 0$

 t^{μ} and ξ^{μ} : co-oriented timelike vectors, U^{μ} : null vector

Semiclassical gravity

Question

000000

Do these theorems generalize to semiclassical gravity?

Semiclassical gravity

Question

Do these theorems generalize to semiclassical gravity?

Semiclassical gravity

Quantum fields generating a classical curved background:

$$8\pi G\langle :T_{\mu\nu}: \rangle_{\psi} = G_{\mu\nu}$$

- Approximate equation with certain regime of validity
- Very few cases where we actually know solutions exist

Semiclassical gravity

Question

Do these theorems generalize to semiclassical gravity?

Semiclassical gravity

Quantum fields generating a classical curved background:

$$8\pi G\langle :T_{\mu\nu}: \rangle_{\psi} = G_{\mu\nu}$$

- Approximate equation with certain regime of validity
- Very few cases where we actually know solutions exist

Positivity of the energy density is in general incompatible with quantum field theory. There is a nonzero probability for both positive and negative measurement values, so the spectrum of observables extends into the negative half-line. All pointwise conditions are violated in that context. [Epstein, Glaser, Jaffe, 1965]

Semiclassical theorems

General strategy:

Step 1: Replace the pointwise condition by an average one and prove the theorem

$$\int_{\gamma} f^2 R_{\mu\nu} U^{\mu} U^{\nu} \ge -(\text{bound})$$

Semiclassical theorems

General strategy:

Step 1: Replace the pointwise condition by an average one and prove the theorem

$$\int_{\gamma} f^2 R_{\mu\nu} U^{\mu} U^{\nu} \ge -(\text{bound})$$

▶ Step 2: Find a condition obeyed by quantum fields with the same kind of bound

$$\int_{\gamma} f^2 \langle : T_{\mu\nu} : U^{\mu} U^{\nu} \rangle_{\psi} \ge - (\text{bound})$$

Semiclassical theorems

General strategy:

Step 1: Replace the pointwise condition by an average one and prove the theorem

$$\int_{\gamma} f^2 R_{\mu\nu} U^{\mu} U^{\nu} \ge -(\text{bound})$$

▶ Step 2: Find a condition obeyed by quantum fields with the same kind of bound

$$\int_{\gamma} f^2 \langle : T_{\mu\nu} : U^{\mu} U^{\nu} \rangle_{\psi} \ge - (bound)$$

► Step 3: Use the semiclassical Einstein equation

$$8\pi G\langle :T_{\mu\nu}:U^{\mu}U^{\nu}\rangle_{\psi}=R_{\mu\nu}U^{\mu}U^{\nu}$$

Weakened energy conditions

Question

00000

What kind of conditions do quantum fields obey?

Weakened energy conditions

Question

What kind of conditions do quantum fields obey?

QFT

Quantum energy inequalities (QEIs) introduce a restriction on the possible magnitude and duration of any negative energy densities within a quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)

$$\int dt\, f^2 \langle : T_{\mu\nu} t^\mu t^\nu : \rangle_\psi \geq -\frac{1}{16\pi^2} \int f''(t)^2 dt$$

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

Weakened energy conditions

Question

What kind of conditions do quantum fields obey?

QFT

Quantum energy inequalities (QEIs) introduce a restriction on the possible magnitude and duration of any negative energy densities within a quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)

$$\frac{1}{t_0}\int dt\, f^2\langle :T_{\mu\nu}t^\mu t^\nu:\rangle_\psi\geq -\frac{C}{t_0^4}$$

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

Weakened condition inspired by QEIs

$$\int f^2 R_{\mu\nu} U^{\mu} U^{\nu} dt \ge -Q_m \|f^{(m)}\|^2 - Q_0 \|f\|^2$$

The original Penrose inequality

ightharpoonup Everywhere on M and for all null vectors U^{μ}

$$R_{\mu\nu}U^{\mu}U^{\nu}\geq 0$$

ightharpoonup M contains a trapped surface T so a singularity forms

 \triangleright Everywhere on M and for all null vectors U^{μ}

$$R_{\mu\nu}U^{\mu}U^{\nu}\geq 0$$

- ► *M* contains a trapped surface *T* so a singularity forms
- ▶ We assume *Weak Cosmic Censorship*: the singularity is behind an event horizon

 \triangleright Everywhere on M and for all null vectors U^{μ}

$$R_{\mu\nu}U^{\mu}U^{\nu}\geq 0$$

- M contains a trapped surface T so a singularity forms
- ▶ We assume Weak Cosmic Censorship: the singularity is behind an event horizon
- The area theorem holds so the event horizon of a black hole is always nondecreasing

 \triangleright Everywhere on M and for all null vectors U^{μ}

$$R_{\mu\nu}U^{\mu}U^{\nu}\geq 0$$

- M contains a trapped surface T so a singularity forms
- ▶ We assume Weak Cosmic Censorship: the singularity is behind an event horizon
- The area theorem holds so the event horizon of a black hole is always nondecreasing
- ► The black hole spacetime settles to a Kerr black hole so

$$A \leq A_{Kerr}$$
,

The Bondi mass

The mass of a gravitating system defined in terms of the asymptotic behavior at *null infinity*.

The ADM mass

The mass of a gravitating system defined in terms of the asymptotic behavior at *spatial infinity*.

The Bondi mass

The mass of a gravitating system defined in terms of the asymptotic behavior at *null infinity*.

The ADM mass

The mass of a gravitating system defined in terms of the asymptotic behavior at *spatial infinity*.

$$A_{
m Kerr} = 8\pi M_{
m Kerr} \left(M_{
m Kerr} + \sqrt{M_{
m Kerr}^2 - a^2}
ight) \leq 16\pi M_{
m Kerr}^2 \,,$$
 $16\pi M_{
m Kerr}^2 = 16\pi M_{
m Bondi}^2 \leq 16\pi m_{
m ADM}^2 \,.$

The Bondi mass

The mass of a gravitating system defined in terms of the asymptotic behavior at *null infinity*.

The ADM mass

The mass of a gravitating system defined in terms of the asymptotic behavior at *spatial infinity*.

$$A_{
m Kerr} = 8\pi M_{
m Kerr} \left(M_{
m Kerr} + \sqrt{M_{
m Kerr}^2 - a^2}
ight) \leq 16\pi M_{
m Kerr}^2 \,,$$
 $16\pi M_{
m Kerr}^2 = 16\pi M_{
m Bondi}^2 \leq 16\pi m_{
m ADM}^2 \,.$

$$m_{
m ADM} \geq \sqrt{rac{A}{16\pi}}$$

The initial data formulation

Use properties of an initial data set instead of the whole spacetime.

- Consider a time-orientable spacetime $(\overline{M}^n, \overline{g})$ satisfying the Einstein equations and *initial data set* (M^d, g, \mathcal{K})
- ▶ The DEC holding in \overline{M} guarantees that

$$\mu \ge |J|_g$$
 along M ,

The initial data formulation

Use properties of an initial data set instead of the whole spacetime.

- Consider a time-orientable spacetime $(\overline{M}^n, \overline{g})$ satisfying the Einstein equations and *initial data set* (M^d, g, \mathcal{K})
- ▶ The DEC holding in \overline{M} guarantees that

The initial data formulation

Use properties of an initial data set instead of the whole spacetime.

- Consider a time-orientable spacetime $(\overline{M}^n, \overline{g})$ satisfying the Einstein equations and *initial data set* (M^d, g, \mathcal{K})
- ▶ The DEC holding in \overline{M} guarantees that

$$\mu \geq \bigcup_{\text{Energy density}} J|_{g}$$
 along M ,

Theorem

Let (M, g, \mathcal{K}) , be a complete spherically symmetric, asymptotically flat initial data set such that ∂M is an outermost marginally outer trapped surface (MOTS). If the DEC holds

$$m_{ ext{ADM}} \geq rac{1}{2} \left(rac{|\partial M|}{\omega_{d-1}}
ight)^{rac{d-2}{d-1}}.$$

Penrose inequality for evaporating black holes

The generalizations

Two generalizations

- 1. Initial data formulation of the Penrose inequality with an average DEC
- 2. Using the previous formulation and a condition inspired by QEIs to acquire a Penrose inequality for evaporating black holes

The generalizations

Two generalizations

- 1. Initial data formulation of the Penrose inequality with an average DEC
- Using the previous formulation and a condition inspired by QEIs to acquire a Penrose inequality for evaporating black holes

Theorem [Hafemann, E-AK, 2025]

Let (M, g, \mathcal{K}) , be a complete spherically symmetric, asymptotically flat initial data set such that ∂M is an outermost MOTS. If the average dominant energy condition (ADEC) holds

$$\int_{r_0}^{\infty} r^{n-1} \left(\mu - |J|_g \right) dr \geq 0,$$

then

$$m_{ ext{ADM}} \geq rac{1}{2} \left(rac{|\partial M|}{\omega_{d-1}}
ight)^{rac{d-2}{d-1}}.$$

A focal point on γ is a point where a causal geodesic no longer extremizes the action integral.

Energy of action integral

$$E[\gamma] = \frac{1}{2} \int_0^\ell g(\gamma'(\lambda), \gamma'(\lambda)) d\lambda$$

A focal point on γ is a point where a causal geodesic no longer extremizes the action integral.

Energy of action integral

$$E[\gamma] = \frac{1}{2} \int_0^\ell g(\gamma'(\lambda), \gamma'(\lambda)) d\lambda$$

The Hessian

$$\begin{split} \mathbf{H}[V] & \equiv \left. \frac{d^2 E[\gamma_s]}{ds^2} \right|_{s=0} = \\ & \int_0^\ell \left[(\nabla_U V_\mu)(\nabla_U V^\mu) + R_{\mu\nu\alpha\beta} \underbrace{\stackrel{\mathsf{tangent}}{U^\mu}}_{\text{variation}} V^\nu V^\alpha U^\beta \right] d\lambda - U_\mu \mathbf{II}^\mu (V,V) \right|_{\gamma(0)} \end{split}$$

Let e_i with i = 1, ..., n-2 be an orthonormal basis of $T_{\gamma(0)}P$, and parallel transport them along γ to generate $\{E_i\}_{i=1,...,n-2}$. Then, take f a smooth function with f(0) = 1 and $f(\ell) = 0$ and sum over i

$$\sum_{i=1}^{n-2} \mathbf{H}(fE_i, fE_i) = -\int_0^\ell \left((n-2)f'^2(\lambda) - f^2 R_{\mu\nu} U^{\mu} U^{\nu} \right) d\lambda - (n-2)f^2 U_{\mu} H^{\mu} \Big|_{\gamma(0)}$$

 H^{μ} is the mean normal curvature vector field of P

Let e_i with $i = 1, \ldots, n-2$ be an orthonormal basis of $T_{\gamma(0)}P$, and parallel transport them along γ to generate $\{E_i\}_{i=1,\ldots,n-2}$. Then, take f a smooth function with f(0) = 1 and $f(\ell) = 0$ and sum over i

$$\sum_{i=1}^{n-2} \mathbf{H}(fE_i, fE_i) = -\int_0^\ell \left((n-2)f'^2(\lambda) - f^2 R_{\mu\nu} U^{\mu} U^{\nu} \right) d\lambda - (n-2)f^2 U_{\mu} \mathbf{H}^{\mu} \Big|_{\gamma(0)}$$

 H^{μ} is the mean normal curvature vector field of P

Condition for the existence of focal points

- No focal point before $q: \mathbf{H}[V] > 0$ for all V
- Focal point before $q: \mathbf{H}[V] < 0$ for some V
- $ightharpoonup \mathbf{H}[V] = 0$ marginal case

Condition for the formation of a focal point

$$U_{\mu}H^{\mu}\big|_{\gamma(0)} \leq -J_{\ell}[f] = -\frac{1}{n-2}\int_{0}^{\ell} \left((n-2)f'(\lambda)^{2} - f(\lambda)^{2}R_{\mu\nu}U^{\mu}U^{\nu}\right)d\lambda$$

Condition for the formation of a focal point

$$U_{\mu}H^{\mu}\big|_{\gamma(0)} \leq -J_{\ell}[f] = -\frac{1}{n-2}\int_{0}^{\ell} \left((n-2)f'(\lambda)^{2} - f(\lambda)^{2}R_{\mu\nu}U^{\mu}U^{\nu}\right)d\lambda$$

Singularity theorem

Geodesic incompleteness for sufficiently trapped surface:

$$U_{\mu}H^{\mu}\big|_{\gamma(0)} \leq -\nu \equiv -\inf_{f} J_{\ell}[f]$$

[Fewster, E-AK, 2019]

Condition for the formation of a focal point

$$U_{\mu}H^{\mu}\big|_{\gamma(0)} \leq -J_{\ell}[f] = -\frac{1}{n-2}\int_{0}^{\ell} \left((n-2)f'(\lambda)^{2} - f(\lambda)^{2}R_{\mu\nu}U^{\mu}U^{\nu}\right)d\lambda$$

Singularity theorem

Geodesic incompleteness for sufficiently trapped surface:

$$U_{\mu}H^{\mu}\big|_{\gamma(0)} \leq -\nu \equiv -\inf_{f} J_{\ell}[f]$$

[Fewster, E-AK, 2019]

Area theorem

The sufficiently trapped surface is always inside the event horizon. [E-AK, Sacchi, 2023]

Penrose inequality for evaporating black holes

Theorem [Hafemann, E-AK, 2025]

- (i) $(\overline{M}^{n+1}, \overline{g})$ is a spherically symmetric, strongly asymptotically predictable with a sufficiently trapped surface T.
- (ii) Let M_1 and M_2 be asymptotically flat partial Cauchy surfaces for the globally hyperbolic region such that $M_1 \subset I^-(M_2)$.

Let $\mathcal{H}_0 \equiv \mathcal{H} \cap M_1$ and $\mathcal{H}_s \equiv \mathcal{H} \cap M_2$. If M_2 is an initial data set satisfying the ADEC and then

$$m_{ ext{ADM}} \geq rac{1}{2} \left(rac{A_{ ext{min}}(T)}{\omega_{n-2}}
ight)^{rac{n-3}{n-2}} \exp\left(-rac{1}{2(n-2)} \int_0^s
u(\lambda) d\lambda
ight).$$

where $A_{\min}(T)$ is the minimum area required to enclose the sufficiently trapped surface T.

Application

We can replace the "sufficiently trapped surface" with

$$\int_{0}^{\ell} f(\lambda)^{2} \overbrace{R_{\mu\nu} U^{\mu} U^{\nu}}^{\nu} d\lambda \geq -Q_{m} \|f^{(m)}\|^{2} - Q_{0} \|f\|^{2}$$

and $\rho \geq \rho_0$ for $[0, \ell_0]$. Then we can compute $\nu(\ell, \ell_0, Q_m, Q_0, \rho_0)$.

For m = 1 and taking $\ell \to \infty$

$$m_{
m ADM} \geq \sqrt{rac{A_{
m min}(T)}{16\pi}} \exp\left(-rac{1}{4}
u_{
m opt} \cdot s
ight)\,,$$

where $\nu_{\rm opt} = \nu_{\rm opt}(Q_0, Q_1, \rho_0)$

The more negative energy allowed and the further apart the initial data sets lie, the more this inequality differs from the original one.

The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in four dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]

$$\int d\lambda \langle : T_{\mu\nu} : U^{\mu}U^{\nu}\rangle_{\psi} f^{2}(\lambda) \geq -\frac{4B}{G_{N}} \|f'\|^{2}$$

The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in four dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]

$$\int d\lambda \langle : T_{\mu\nu} : U^{\mu} U^{\nu} \rangle_{\psi} f^{2}(\lambda) \geq -\frac{4B}{G_{N}} \|f'\|^{2}$$

What is B?

Numerical constant that expresses the scale of the UV cutoff

- ho $\ell_{\mathrm{UV}} pprox \mathrm{Planck} \ \mathrm{length}
 ightarrow \mathrm{B} \ \mathrm{order} \ 1
 ightarrow \mathrm{A} \ \mathrm{lot} \ \mathrm{of} \ \mathrm{negative} \ \mathrm{energy} \ \mathrm{allowed}$
- ▶ $\ell_{\rm UV}$ ≫ Planck length → B small → A little negative energy allowed

The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in four dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]

$$\int d\lambda \langle : T_{\mu\nu} : U^{\mu}U^{\nu}\rangle_{\psi}f^{2}(\lambda) \geq -\frac{4B}{G_{N}}\|f'\|^{2}$$

Semiclassical Einstein equation

$$8\pi G_N \langle :T_{\mu\nu} : U^{\mu} U^{\nu} \rangle_{\psi} = R_{\mu\nu} U^{\mu} U^{\nu}$$

Interpretation

'Global' form of inequalities

$$m_{
m ADM} \geq rac{1}{2} \sqrt{rac{|\mathcal{H} \cap M_0|}{16\pi}} \exp\left(-rac{1}{4}
u_{
m opt} \cdot s
ight) \,, \qquad m_{
m ADM} \geq \sqrt{rac{A}{16\pi}}$$

Interpretation

'Global' form of inequalities

$$m_{
m ADM} \geq rac{1}{2} \sqrt{rac{|\mathcal{H} \cap M_0|}{16\pi}} \exp\left(-rac{1}{4}
u_{
m opt} \cdot s
ight) \,, \qquad m_{
m ADM} \geq \sqrt{rac{A}{16\pi}}$$

Problem: the event horizon is unknown before the full evolution.

Interpretation

'Global' form of inequalities

$$m_{
m ADM} \geq rac{1}{2} \sqrt{rac{|\mathcal{H} \cap M_0|}{16\pi}} \exp\left(-rac{1}{4}
u_{
m opt} \cdot s
ight) \,, \qquad m_{
m ADM} \geq \sqrt{rac{A}{16\pi}}$$

Problem: the event horizon is unknown before the full evolution.

$$m_{
m ADM} \geq \sqrt{rac{A_{
m min}(\mathcal{T})}{16\pi}} \exp\left(-rac{1}{4}
u_{
m opt} \cdot s
ight)\,,$$

Use: if the inequality is not satisfied for a given QEI, then the failure can be attributed to the non-formation of the event horizon.

Conclusions

- ▶ Proved versions of the Penrose inequality with average energy conditions
- ▶ Is there a relation between QEIs and the SDEC? Could it be applicable for quantum fields?
- Relationship with positive mass theorem?