
Vector induced gravitational waves (VIGWs) 
sourced by primordial magnetic fields (PMFs)

NEB 21 Conference - "Recent Developments in Gravity" 

Ionian University, Corfu, Greece


 02/09/2025

Theodoros Papanikolaou

1

JCAP 08 (2025) 054 • arXiv: 2504.10477 - A. Bhaumik, T. Papanikolaou, A. Ghoshal

https://arxiv.org/abs/2504.10477


Talk Outline

2



Talk Outline

• Recap of the first order vector metric perturbations

3



Talk Outline

• Recap of the first order vector metric perturbations


• PMFs as a source of vector metric perturbations

4



Talk Outline
• Recap of the first order vector metric perturbations


• PMFs as a source of vector metric perturbations


• Generic Formalism of VIGWs

5



Talk Outline
• Recap of the first order vector metric perturbations


• PMFs as a source of vector metric perturbations


• Generic Formalism of VIGWs


• PMF-sourced VIGW spectrum

6



Talk Outline
• Recap of the first order vector metric perturbations


• PMFs as a source of vector metric perturbations


• Generic Formalism of VIGWs


• PMF-sourced VIGW spectrum


• GW detectability

7



Talk Outline

• Recap of the first order vector metric perturbations


• PMFs as a source of vector metric perturbations


• Generic Formalism of VIGWs


• PMF-sourced VIGW spectrum


• GW detectability


• Conclusions - Outlook

8



First order vector perturbations

9

ds2 = a(η)2[−(1 + 2Φ) dη2 − 2ζidηdxi + {(1 − 2Ψ) δij + (∂iξj + ∂jξi) +
1
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Primordial magnetic fields can generate such vector perturbations!
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Induced Gravitational Waves

A few well-studied scenarios

• Scalar-induced gravitational waves (SIGWs)  Ananda et al (2007), Baumann et 

al (2007), Domenech (2021), etc.


• Tensor-induced scalar perturbations Bari et al (2022 & 2023).


• IGWs from scalar-tensor coupling  Picard & Malik (2023), Bari et al (2023). 


• Scalar-induced vector perturbations Mollerach et al (2003), Saga et al.(2015).


• Tensor-induced tensor perturbations Picard & Malik (2023), Gorji & Sasaki 
(2023).

⇒

⇒

⇒

⇒

⇒
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Generic bilinear VIGW source function (using xPand) 
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ij Sab(x, η) ,

Sab(x, η) = − Vc∂c(∂aVb + ∂bVa) + ∂cVa∂cVb + ∂aVc∂bVc + 2Vc∂a∂bVc +
ΔVaΔVb

6ℋ2(1 + w)
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ij
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i
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−λ(k)Vm(k − q, η)(q . (q − k) +
q2 |q − k |2
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−(eℓ
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We need to compute the VIGW two-point correlator 




where with .


⟨hλ(k1, η)hλ′￼(k2, η)⟩ =
η

∫
ηi

dη1

η

∫
ηi

dη2 gk1
(η, η1)gk2

(η, η2)⟨Sλ(k1, η1)Sλ′￼(k2, η2)⟩,

gk(η, η̃) =
π
2k

(k η̃)α+1/2

(kη)α−1/2 [Jα−1/2(k η̃)Yα−1/2(kη) − Jα−1/2(kη)Yα−1/2(k η̃)], α =
3(1 − w)

2(1 + 3w)
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⟨Π(V )
i (k)Π(V )
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16πGΠ(V )
i (k)η

a(η)2k
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The Ratra picture


Generates inflationary PMFs via 
explicit breaking of the conformal 
invariance of the Maxwell action

[Ratra - 1992; Subramanian - 2015]

ℒEM = −
1
4 ( ainf

a )
2s

FμνFμν : a < ainf
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The fundamental parameters
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AB =
1
π

Γ (s −
1
2 )

2

(2ainfHinf)2(s−1)

nB = − 2s + 3
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AB =
1
π

Γ (s −
1
2 )

2

(2ainfHinf)2(s−1)

nB = − 2s + 3

3

Scale factor at the end of inflation


duration in e-folds of the post-inflationary era.ΔNreh =

ainf = ( H0

Heq )
2
3

(
Heq

Hinf )
1
2

e(3wreh−1)ΔNreh/4

H0 ∼ 10−42 GeV, Heq ∼ 10−37 GeV
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2

The fundamental parameters


(Kobayashi & Sloth - 2019) 

AB =
1
π

Γ (s −
1
2 )

2

(2ainfHinf)2(s−1)

nB = − 2s + 3

3

Scale factor at the end of inflation


duration in e-folds of the post-inflationary era.ΔNreh =

ainf = ( H0

Heq )
2
3

(
Heq

Hinf )
1
2

e(3wreh−1)ΔNreh/4

H0 ∼ 10−42 GeV, Heq ∼ 10−37 GeV

Total parameter space: Let us compute the VIGW two-point correlation function! {Hinf, ΔNreh, s, w} ⟹
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The GW spectral abundance


For freely propagating GWs on sub-horizon scales


ΩGW(k, η) =
1
ρc

dρGW

dlnk
≈

1
12 [ k

ℋ(η) ]
2

𝒫h(k, η)
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For freely propagating GWs on sub-horizon scales


ΩGW(k, η) =
1
ρc

dρGW

dlnk
≈

1
12 [ k

ℋ(η) ]
2

𝒫h(k, η)

The tensor power spectrum in terms of 2-point function


⟨hij(k, η)hij(k′￼, η)⟩ ≡
2π2

k3
𝒫h(k, η)δ(3)(k + k′￼)
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For freely propagating GWs on sub-horizon scales


ΩGW(k, η) =
1
ρc

dρGW

dlnk
≈

1
12 [ k

ℋ(η) ]
2

𝒫h(k, η)

The tensor power spectrum in terms of 2-point function


⟨hij(k, η)hij(k′￼, η)⟩ ≡
2π2

k3
𝒫h(k, η)δ(3)(k + k′￼)

Present-day GW spectral abundance on scales :  k ≳ kreh ΩGW(k, η0) = Ω(0)
r (

g*ρ,*

g*ρ,0 ) (
g*S,0

g*S,* )
4/3

ΩGW(k, ηreh)
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The GW spectral abundance


For freely propagating GWs on sub-horizon scales


ΩGW(k, η) =
1
ρc

dρGW

dlnk
≈

1
12 [ k

ℋ(η) ]
2

𝒫h(k, η)

The tensor power spectrum in terms of 2-point function


⟨hij(k, η)hij(k′￼, η)⟩ ≡
2π2

k3
𝒫h(k, η)δ(3)(k + k′￼)

Present-day GW spectral abundance on scales :  k ≳ kreh ΩGW(k, η0) = Ω(0)
r (

g*ρ,*

g*ρ,0 ) (
g*S,0

g*S,* )
4/3

ΩGW(k, ηreh)

Characteristic scale: kreh = (HinfHeq)
1/2

( H0

Heq )
2/3

exp [−
3
4

(wreh + 1)ΔNreh]
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The GW spectral abundance


For freely propagating GWs on sub-horizon scales


ΩGW(k, η) =
1
ρc

dρGW

dlnk
≈

1
12 [ k

ℋ(η) ]
2

𝒫h(k, η)

The tensor power spectrum in terms of 2-point function


⟨hij(k, η)hij(k′￼, η)⟩ ≡
2π2

k3
𝒫h(k, η)δ(3)(k + k′￼)

Present-day GW spectral abundance on scales :  k ≳ kreh ΩGW(k, η0) = Ω(0)
r (

g*ρ,*

g*ρ,0 ) (
g*S,0

g*S,* )
4/3

ΩGW(k, ηreh)

Characteristic scale: kreh = (HinfHeq)
1/2

( H0

Heq )
2/3

exp [−
3
4

(wreh + 1)ΔNreh]

The GW spectral abundance on small scales can be computed at   

and related to its present-day value!

η = ηreh
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• Time integral runs between  and 


• Momentum integral runs between  and .


ηinf ηreh .

kinf kreh

Gives an accurate estimate of the VIGW 
spectrum on sub horizon at the onset of RD.

For , we approximate with Universal IR scaling [Cai et al. - 2019].k < kreh ΩGW(k, η0) ∝ k3 ⟹

May lead to an underestimation of the VIGW amplitude, and/or result in some loss of accuracy 

 in the spectrum close to  from the left…
kreh

At the end, we find that a detectably large VIGW signal at small scales 


can be obtained for realistic parameter values!
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fpeak
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2π
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Approximate Scaling Relation: ΩGW( fpeak, η0) ∝ [10ΔNreh ( Hinf

MPl )]
8
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Future Perspectives 

• Semi-analytic and/or simulation-based modelling of VIGWs during RD.


• Disentangling the VIGW spectrum from competing signals, e.g. PGWs, SIGWs.




Thanks for your attention!
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Back-Up Slides 



75

Full S+V+T source term for second-order IGWs

Our focus is on (C.1); pure SIGWs are sourced by (C.2);  

pure tensor-induced tensors result from (C.3); rest are SVT cross-terms.



Analytic expressions for ⟨S+S+⟩

⟨hijhij⟩ ∼ ⟨S+S+⟩ + ⟨S−S−⟩ + ⟨S+S−⟩ + ⟨S−S+⟩ = 2 (⟨S+S+⟩ + ⟨S+S−⟩)
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VIGWs vs first order PMF sourced GWs

• Comparison of VIGW spectrum vs first-order 
PMF-sourced GW spectrum produced during a 
post-inflationary kination epoch for identical 
combinations of parameters:


•  (dot-dashed); 
 ( d a s h e d ) ;  
 (solid).


• Can be explained based on the following 
observations: 

◦ PMFs decay whereas vector modes do not.

◦ VIGW spectrum receives  and -integrated 

contributions.

Hinf = 106.8GeV & ΔNreh = 14.5
Hinf = 109.3GeV & ΔNreh = 12.0
Hinf = 1011.3GeV & ΔNreh = 10.0

η k

77

Apart from vector perturbations, PMFs can also directly source tensor perturbations.

𝒫(B)
T (k, η) = 64G2k3 |Π(T )(k) |2

η

∫
ηi

dη̃
a(η̃1)2

gk(η, η̃)

2
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What about s ≠ 2?
• For example, choosing merely one order reduction in peak amplitude.


• This is because for   the UV-cutoff term dominates the analytic expression for 
 , whose index therefore becomes independent of the magnetic spectral index. 


• Negative and non-integer values of s are less favoured from an inflationary magnetogenesis 
perspective.

s = 1 ⟹

2nB + 3 > 0,
|Π(V)(k) |2
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What about w ≠ 1?
• Vector modes start decaying for VIGW production is less efficient.


• The reduction is quite significant due to four-point dependence on vectors + time 
integrated effect.


• Larger numerical instabilities due to fast-oscillating Bessel functions  something to 
revisit in future!


w < 1 ⟹

⟹



Avoiding magnetic backreaction

• For satisfied by all of our choices


• For 


• For arbitrary 


For larger values of s, the backreaction constraint may rule out parts of the 
 parameter space.

s = 2 : (Hinf /GeV) eΔNreh < 1051 ⟹

s = 4 : (Hinf /GeV) e3ΔNreh < 1050

s :
22(s−1)

π(3 − s)
Γ (s +

1
2 )

2

a4
inf (Hinf /GeV)4 [1 − e−4(3−s)ΔNreh] < 10−42

{Hinf, ΔNreh}
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Backreaction constraint at the end of kination epoch 

kinf

∫
kreh

dρB(k, ηreh)
d ln k

d ln k <
π2

30
grehT4

reh


