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Introduction

• To date, only two exact solutions with well-defined static limits are
known to describe the exterior gravitational field of a spinning mass
in vacuum.

• The first is the Kerr metric,1 which remains the most astrophysically
relevant solution to Einstein’s field equations, underpinning much of
our theoretical understanding of rotating black holes.

• The second is its less familiar generalization, the Tomimatsu–Sato
metric.2

• Unlike the Kerr metric, the Tomimatsu–Sato solution does not reduce
to the Schwarzschild geometry in the limit of vanishing angular mo-
mentum, but to a class of Weyl metrics known as Zipoy–Voorhees
spacetimes.3

• The latter represents in the Weyl representation, a finite thin rod of
mass M and size 2l, with an arbitrary linear density.

1R.P. Kerr, PRL (1963)

2A. Tomimatsu and H. Sato, PRL (1972)

3D.M. Zipoy, JMP (1966). B.H. Voorhees, PRD (1970)



• Stationary and axisymmetric geometries in four dimensions are charac-
terized by the action of a group R×SO(2) under which the spacetime
metric remains invariant.

• If the orbits of R × SO(2) (surfaces of transitivity) are everywhere
orthogonal to a family of hypersurfaces defined by the remaining, non-
Killing coordinates of the spacetime (meridional surfaces), then the
spacetime is said to be circular, and the action of the group is said to
be orthogonally transitive.

• Upon establishing circularity, stationarity, and axisymmetry, the most
general spacetime is described by the LWP metric, either in its stan-
dard electric form or in its magnetic representation.



LWP spacetimes and Ernst scheme

• In the canonical Weyl coordinates denoted by {t, ρ, z, ϕ}, they read

ds2 = −f (dt− ω dϕ)
2
+

1

f

[
e2γ

(
dρ2 + dz2

)
+ ρ2 dϕ2

]
, (1)

ds2 = f (dϕ− ω dt)
2
+

1

f

[
e2γ

(
dρ2 + dz2

)
− ρ2 dt2

]
, (2)

where f, ω, and γ are functions of ρ and z only.
• It can be shown that Einstein’s equations reduce to the complex Ernst

equation4

Re (E)∇2E = ∇E ·∇E , (3)

where E is the complex Ernst gravitational potential

E = −f − iχ (4)

and χ is provided by the relevant twist equation

ϕ̂×∇χ = −f2

ρ
∇ω. (5)

4F.J. Ernst, PR (1968)



The formalism offers two main advantages:

i We reduce the problem to solving a PDE system in Euclidean space
with cylindrical coordinates.

ii Einstein(–Maxwell) equations can be shown to display a set of hidden
Lie point symmetries. These symmetries are5

G1[a] : (E0,Φ0) 7→ (E ,Φ) := (E + ia,Φ0), (6a)

G2[α] : (E0,Φ0) 7→ (E ,Φ) := (E0 − 2αΦ0 − αα,Φ0 + α),(6b)

D[ϵ] : (E0,Φ0) 7→ (E ,Φ) := (ϵϵE0, ϵΦ0), (6c)

E[c] : (E0,Φ0) 7→ (E ,Φ) :=
(E0,Φ0)

1 + icE0
, (6d)

H[β] : (E0,Φ0) 7→ (E ,Φ) :=
(E0,Φ0 + βE0)

1− 2βΦ0 − ββE0
. (6e)

From known solutions (E0,Φ0) we can construct new solutions (E ,Φ)
with E[c], H[β].

5Exact solutions of Einstein’s field equations, Cambridge Monographs on Mathematical Physics (2003)



• When applying Ehlers or Harrison on a (asymptotically flat) seed
spacetime written in electric LWP form the resulting spacetime is
asymptotically flat:

i Ehlers: Schwarzschild →
E[c]

Taub–NUT

ii Harrison: Schwarzschild →
H[β]

Reissner–Nordström

• When applying on a seed in a magnetic LWP form the asymptotic
behaviour of the seed changes to a Levi-Civita-like spacetime

ds2 = −ρ4σ dt2 + k2ρ4σ(2σ−1)(dρ2 + dz2) + ρ2(1−2σ) dϕ2. (7)

i Ehlers: Minkowski →
E[c]

Swirling background

ds2 =
ρ2

1 + j2ρ4
(dϕ+ 4jz dt)2 +

(
1 + j2ρ4

) (
−dt2 + dρ2 + dz2

)
.

ii Harrison: Minkowski →
H[β]

Melvin background

ds
2
=

[
1 +

E2

4
ρ
2

]2 (
− dt

2
+ dρ

2
+ dz

2
)
+

[
1 +

E2

4
ρ
2

]−2

ρ
2
dϕ

2
, A = Ez dt.



• Relevant to our construction is the discrete inversion transformation
that arises from a Weyl rescaling, a gravitational gauge transforma-
tion, and an Ehlers in the limit where the Ehlers parameter is taken
to infinity6

I : E0 7→ E :=
1

E0
. (8)

• For a seed Ernst potential E0 = −f0 − iχ0, the inversion acts as:

f =
f0

f2
0 + χ2

0

, χ = − χ0

f2
0 + χ2

0

. (9)

• Buchdahl gave an intuitive metric version in the static case:7 If

ds20 = gµν dx
µ dxν = F (xk)(dxa)2 + gij(x

k) dxi dxj , (10)

is a vacuum solution, then the reciprocal

ds2 = F−1(dxa)2 + F 2gij dx
i dxj , (11)

is also a solution.

6J. Ehlers, Colloq. Int. CNRS (1962)

7H.A. Buchdahl, AJP (1956)



The Kerr–Levi-Civita spacetime

• Similar to Ehlers and Harrison: It can be proven that the electric in-
version does not transform any solution of the Plebański–Demiański
family. The Ernst potential remains asymptotically flat. This is con-
sistent with uniqueness theorems.8

• Then the importance of expressing the seed metric in a magnetic form
becomes fundamental.

• Example: Schwarzschild–Levi-Civita black hole with Buchdahl theo-
rem.9

• We construct the Kerr–Levi-Civita spacetime starting from the Kerr
metric as a seed, expressed in magnetic LWP form with spherical-like
coordinates {t, r, x = cos θ, ϕ}.

8B. Carter, PRL (1971)

9J.B., A. Cisterna, M. Hassaine, and J. Oliva, EPJC (2024)



Explicitly:

ds20=f0(dϕ− ω0 dt)
2 − ∆r∆x dt

2

f0
+

e2γ0

f0

(
dr2

∆r
+

dx2

∆x

)
, (12)

where

f0(r, x) = ∆x
(r2 + a2)2 − a2∆r∆x

ϱ2
,

ω0(r, x) = a
(r2 + a2)−∆r

(r2 + a2)2 − a2∆r∆x
,

e2γ0(r,x) = ∆x

[
(r2 + a2)2 − a2∆r∆x

]
,

∆r(r) = r2 − 2mr + a2, ∆x(x) = 1− x2,

(13)

and ϱ2(r, x) = r2 + a2x2.

The function f follows directly, while ω is obtained from the seed ω0 via
the twist equation (5), giving χ0.



Thus, we end up with

f(r, x) = ∆xϱ
2 (r2 + a2)2 − a2∆r∆x

4m2a2x2 [a2∆2
x + ϱ2(∆x + 2)]2 +∆2

x [(r2 + a2)2 − a2∆r∆x]
2 ,

ω(r, x) =
(2a2m − 3a2r + r3)∆rx

4 − 6r(a2 + r2)∆rx
2 + (2a2m + a2r + r3)(a2 − 6mr − 3r2)

∆ra2x2 + r(2a2m + a2r + r3)

× (−2ma).

The Kerr–Levi-Civita spacetime in spherical-like coordinates is given by

ds2=f(dϕ− ω dt)2 − ∆r∆x dt
2

f
+

e2γ0

f

(
dr2

∆r
+

dx2

∆x

)
.



The Geometry

• Since gϕϕ ≡ f > 0, the azimuthal Killing vector ∂ϕ is spacelike for
r > 0, becoming null only on the axis x = ±1. Hence, no closed
timelike curves arise.

• Introducing a new coordinate system {t, ρ̃, z̃, ϕ}, the induced metric
on the slices of constant t and z̃, near the symmetry axis, becomes

ds2 ∼ dρ̃2 +
ρ̃2

256a4m4
dϕ2. (14)

• Since |∂ϕ|2 ∼ ρ̃2, there is no Misner string.

• However, there is a defect angle 2π(1−ϑ) where ϑ = ±1/(16a2m2).
To deal with that, we can redefine

ϕ = 16a2m2φ, (15)

and take φ as our new azimuthal coordinate. Then, the new spacetime
is free of conical singularities as well.



• In coordinates {t, ρ, z, φ}, the asymptotic form of the metric reads

ds2 ∼
ρ,z→∞

ds2LC − 64a3m3 3ρ
4 + 12ρ2z2 + 8z4

ρ2(ρ2 + z2)3/2
dtdφ, (16)

where

ds2LC = ρ4
(
−dt2 + dρ2 + dz2

)
+

256a4m4

ρ2
dφ2. (17)

• The latter belongs to Levi-Civita spacetimes.

• Since the asymptotic geometry is a rotating generalization of the LC
geometry, we may formally address the solution as the Kerr–LC space-
time.



• Two limits can be taken in the Kerr–Levi-Civita spacetime:

i For m = 0, the solution is nothing but the LC background (for σ =
1 = k)

ds2 = r4 sin4 θ
[
dt2 + dr2 + r2 dθ2

]
+

dϕ2

r2 sin2 θ
. (18)

ii For a = 0, we recover the Schwarzschild–Levi-Civita solution: a static
black hole embedded in a LC cylindrical background

ds2 = r4 sin4 θ

[(
1− 2m

r

)
dt2 +

dr2

1− 2m
r

+ r2 dθ2
]
+

dϕ2

r2 sin2 θ
.

(19)

• In both cases, we end up with static spacetimes.

• Thus, a spinning mass placed in a Levi-Civita background drags it
asymptotically, producing a rotation effect, similar to the one of swirling
spacetimes. But with the crucial difference that the background of
the Kerr–LC is non-rotating.



• The metric component grr features poles as in Kerr black hole,

r+ = m+
√

m2 − a2, r− = m−
√
m2 − a2, (20)

• Curvature invariants are regular there! In fact, they are regular ev-
erywhere! (Schwarzschild–LC is singular all along the symmetry axis)
There is no ring singularity like in Kerr.

• Due to the swirling-like asymptotic behavior of the spacetime, it is
impossible to define a Killing vector that remains timelike everywhere.
This is a phenomenon already observed in magnetized or swirling black
hole spacetimes,10 where the asymptotic dragging of inertial frames
prevents a global timelike direction. Equivalently, the ergoregions
extend to infinity in the Kerr–LC spacetime:

10G.W. Gibbons, A.H. Mujtaba, and C.N. Pope, CQG (2013). J.B. et al, EPJC (2024). A. Vigano, 2211.00436 (2022)
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Figure: Cross section, taken at y = 0, of the ergoregion (gray fill) dressing the
event-horizon of a Kerr–LC black hole with r+ = 1 and r− = 1/2 in rotating
frames with angular velocity α = 0 (a), α = 1.64 (b), and α = 3 (c).



One last comment regarding the similarities with swirling spacetimes:

• In a Kerr spacetime, the asymptotic geometry is static; the angular
velocity falls off like ∼ 1/r3. In the Kerr–LC spacetime, we have that

Ω ∼
r→∞

3 + 6x2 − x4

8am
r. (21)

• It is rather reminiscent of what happens in spacetimes describing black
holes embedded into a swirling universe.



Final remarks

• We have constructed a novel rotating vacuum solution of Einstein’s
field equations: Kerr–Levi-Civita black hole.

• It is a rotating generalization of the recently studied Schwarzschild–
Levi-Civita black hole.

• Completely regular: Free of curvature singularities, conical defects,
spinning strings, and closed timelike curves.

• Similarities with swirling spacetimes; however, the frame-dragging in
swirling black holes exists even if we remove the mass source, be it
static or non-static, due to the intrinsic rotation of the background.
On the other hand, dragging in the Kerr–LC spacetime is solely due
to the angular momentum J ≡ am of the Kerr seed.



Thank you!


