Kerr-Levi-Civita black hole: A new rotating spacetime in vacuum

Based on 2506.07166 [gr-qc], JB, A. Cisterna, M. Hassaine, K. Müller and K. Pallikaris

José Barrientos

Universidad de Tarapacá Institute of Mathematics, Czech Academy of Sciences

September 2, 2025, NEB-21, Corfu

Introduction

- To date, only two exact solutions with well-defined static limits are known to describe the exterior gravitational field of a spinning mass in vacuum.
- The first is the Kerr metric,¹ which remains the most astrophysically relevant solution to Einstein's field equations, underpinning much of our theoretical understanding of rotating black holes.
- The second is its less familiar generalization, the Tomimatsu–Sato metric.²
- Unlike the Kerr metric, the Tomimatsu–Sato solution does not reduce to the Schwarzschild geometry in the limit of vanishing angular momentum, but to a class of Weyl metrics known as Zipoy–Voorhees spacetimes.³
- The latter represents in the Weyl representation, a finite thin rod of mass M and size 2l, with an arbitrary linear density.

¹R.P. Kerr, PRL (1963)

² A. Tomimatsu and H. Sato, PRI (1972)

³D.M. Zipoy, JMP (1966). B.H. Voorhees, PRD (1970)

- Stationary and axisymmetric geometries in four dimensions are characterized by the action of a group R×SO(2) under which the spacetime metric remains invariant.
- If the orbits of $\mathbb{R} \times SO(2)$ (surfaces of transitivity) are everywhere orthogonal to a family of hypersurfaces defined by the remaining, non-Killing coordinates of the spacetime (meridional surfaces), then the spacetime is said to be circular, and the action of the group is said to be orthogonally transitive.
- Upon establishing circularity, stationarity, and axisymmetry, the most general spacetime is described by the LWP metric, either in its standard electric form or in its magnetic representation.

LWP spacetimes and Ernst scheme

• In the canonical Weyl coordinates denoted by $\{t, \rho, z, \phi\}$, they read

$$ds^{2} = -f (dt - \omega d\phi)^{2} + \frac{1}{f} \left[e^{2\gamma} (d\rho^{2} + dz^{2}) + \rho^{2} d\phi^{2} \right], \quad (1)$$

$$ds^{2} = f (d\phi - \omega dt)^{2} + \frac{1}{f} \left[e^{2\gamma} (d\rho^{2} + dz^{2}) - \rho^{2} dt^{2} \right], \quad (2)$$

where f, ω , and γ are functions of ρ and z only.

 It can be shown that Einstein's equations reduce to the complex Ernst equation⁴

$$\operatorname{Re}(\mathcal{E}) \nabla^2 \mathcal{E} = \nabla \mathcal{E} \cdot \nabla \mathcal{E}, \tag{3}$$

where ${\cal E}$ is the complex Ernst gravitational potential

$$\mathcal{E} = -f - i\chi \tag{4}$$

and χ is provided by the relevant twist equation

$$\hat{\boldsymbol{\phi}} \times \boldsymbol{\nabla} \chi = -\frac{f^2}{\rho} \boldsymbol{\nabla} \omega. \tag{5}$$

⁴F.J. Ernst, PR (1968)

The formalism offers two main advantages:

- We reduce the problem to solving a PDE system in Euclidean space with cylindrical coordinates.
- Einstein(-Maxwell) equations can be shown to display a set of hidden Lie point symmetries. These symmetries are⁵

$$G_1[a]: (\mathcal{E}_0, \Phi_0) \mapsto (\mathcal{E}, \Phi) := (\mathcal{E} + ia, \Phi_0),$$
 (6a)

$$G_2[\alpha]:(\mathcal{E}_0,\Phi_0)\mapsto (\mathcal{E},\Phi)\quad :=\quad (\mathcal{E}_0-2\overline{\alpha}\Phi_0-\alpha\overline{\alpha},\Phi_0+\alpha), \text{(6b)}$$

$$D[\epsilon] : (\mathcal{E}_0, \Phi_0) \mapsto (\mathcal{E}, \Phi) := (\epsilon \overline{\epsilon} \mathcal{E}_0, \epsilon \Phi_0), \tag{6c}$$

$$E[c]: (\mathcal{E}_0, \Phi_0) \mapsto (\mathcal{E}, \Phi) := \frac{(\mathcal{E}_0, \Phi_0)}{1 + ic\mathcal{E}_0}, \tag{6d}$$

$$H[\beta]: (\mathcal{E}_0, \Phi_0) \mapsto (\mathcal{E}, \Phi) := \frac{(\mathcal{E}_0, \Phi_0 + \beta \mathcal{E}_0)}{1 - 2\overline{\beta}\Phi_0 - \beta\overline{\beta}\mathcal{E}_0}.$$
 (6e)

From known solutions (\mathcal{E}_0, Φ_0) we can construct new solutions (\mathcal{E}, Φ) with E[c], $H[\beta]$.

⁵Exact solutions of Einstein's field equations, Cambridge Monographs on Mathematical Physics (2003)

- When applying Ehlers or Harrison on a (asymptotically flat) seed spacetime written in electric LWP form the resulting spacetime is asymptotically flat:
 - $\textbf{ 1} \textbf{ Ehlers: Schwarzschild} \xrightarrow{\mathbf{E}[c]} \textbf{Taub-NUT}$
- When applying on a seed in a magnetic LWP form the asymptotic behaviour of the seed changes to a Levi-Civita-like spacetime

$$ds^{2} = -\rho^{4\sigma} dt^{2} + k^{2} \rho^{4\sigma(2\sigma-1)} (d\rho^{2} + dz^{2}) + \rho^{2(1-2\sigma)} d\phi^{2}.$$
 (7)

1 Ehlers: Minkowski \rightarrow Swirling background

$$ds^{2} = \frac{\rho^{2}}{1 + i^{2} \rho^{4}} (d\phi + 4jz dt)^{2} + (1 + j^{2} \rho^{4}) (-dt^{2} + d\rho^{2} + dz^{2}).$$

 \bigoplus Harrison: Minkowski $\underset{H[\beta]}{\rightarrow}$ Melvin background

$$ds^{2} = \left[1 + \frac{E^{2}}{4}\rho^{2}\right]^{2} \left(-dt^{2} + d\rho^{2} + dz^{2}\right) + \left[1 + \frac{E^{2}}{4}\rho^{2}\right]^{-2}\rho^{2} d\phi^{2}, \quad A = Ez dt.$$

 Relevant to our construction is the discrete inversion transformation that arises from a Weyl rescaling, a gravitational gauge transformation, and an Ehlers in the limit where the Ehlers parameter is taken to infinity⁶

$$I: \mathcal{E}_0 \mapsto \mathcal{E} := \frac{1}{\mathcal{E}_0}.$$
 (8)

• For a seed Ernst potential $\mathcal{E}_0 = -f_0 - i\chi_0$, the inversion acts as:

$$f = \frac{f_0}{f_0^2 + \chi_0^2}, \qquad \chi = -\frac{\chi_0}{f_0^2 + \chi_0^2}.$$
 (9)

Buchdahl gave an intuitive metric version in the static case:⁷ If

$$ds_0^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = F(x^k)(dx^a)^2 + g_{ij}(x^k) dx^i dx^j, \qquad (10)$$

is a vacuum solution, then the reciprocal

$$ds^{2} = F^{-1}(dx^{a})^{2} + F^{2}g_{ij} dx^{i} dx^{j},$$
(11)

is also a solution.

 $^{^6\,\}mathrm{J}.$ Ehlers, Colloq. Int. CNRS (1962)

⁷H.A. Buchdahl, AJP (1956)

The Kerr–Levi-Civita spacetime

- Similar to Ehlers and Harrison: It can be proven that the electric inversion does not transform any solution of the Plebański–Demiański family. The Ernst potential remains asymptotically flat. This is consistent with uniqueness theorems.⁸
- Then the importance of expressing the seed metric in a magnetic form becomes fundamental.
- Example: Schwarzschild–Levi-Civita black hole with Buchdahl theorem.⁹
- We construct the Kerr–Levi-Civita spacetime starting from the Kerr metric as a seed, expressed in magnetic LWP form with spherical-like coordinates $\{t, r, x = \cos\theta, \phi\}$.

⁸B. Carter, PRL (1971)

⁹ J.B., A. Cisterna, M. Hassaine, and J. Oliva, EPJC (2024)

Explicitly:

$$ds_0^2 = f_0 (d\phi - \omega_0 dt)^2 - \frac{\Delta_r \Delta_x dt^2}{f_0} + \frac{e^{2\gamma_0}}{f_0} \left(\frac{dr^2}{\Delta_r} + \frac{dx^2}{\Delta_x} \right), \quad (12)$$

where

$$f_{0}(r,x) = \Delta_{x} \frac{(r^{2} + a^{2})^{2} - a^{2} \Delta_{r} \Delta_{x}}{\varrho^{2}},$$

$$\omega_{0}(r,x) = a \frac{(r^{2} + a^{2}) - \Delta_{r}}{(r^{2} + a^{2})^{2} - a^{2} \Delta_{r} \Delta_{x}},$$

$$e^{2\gamma_{0}(r,x)} = \Delta_{x} \left[(r^{2} + a^{2})^{2} - a^{2} \Delta_{r} \Delta_{x} \right],$$

$$\Delta_{r}(r) = r^{2} - 2mr + a^{2}, \quad \Delta_{x}(x) = 1 - x^{2},$$

$$x^{2} + a^{2}x^{2}$$
(13)

and $\varrho^2(r,x) = r^2 + a^2x^2$.

The function f follows directly, while ω is obtained from the seed ω_0 via the twist equation (5), giving χ_0 .

Thus, we end up with

$$f(r,x) = \Delta_x \varrho^2 \frac{(r^2 + a^2)^2 - a^2 \Delta_r \Delta_x}{4m^2 a^2 x^2 \left[a^2 \Delta_x^2 + \varrho^2 (\Delta_x + 2)\right]^2 + \Delta_x^2 \left[(r^2 + a^2)^2 - a^2 \Delta_r \Delta_x\right]^2},$$

$$\begin{split} & f(r,x) = \Delta_x \varrho \ \frac{1}{4m^2a^2x^2\left[a^2\Delta_x^2 + \varrho^2(\Delta_x + 2)\right]^2 + \Delta_x^2\left[(r^2 + a^2)^2 - a^2\Delta_r\Delta_x\right]^2}, \\ & \omega(r,x) = \frac{(2a^2m - 3a^2r + r^3)\Delta_rx^4 - 6r(a^2 + r^2)\Delta_rx^2 + (2a^2m + a^2r + r^3)(a^2 - 6mr - 3r^2)}{\Delta_ra^2x^2 + r(2a^2m + a^2r + r^3)} \end{split}$$

The Kerr-Levi-Civita spacetime in spherical-like coordinates is given by
$$\mathrm{d}s^2 = f(\mathrm{d}\phi - \omega\,\mathrm{d}t)^2 - \frac{\Delta_r \Delta_x\,\mathrm{d}t^2}{f} + \frac{\mathrm{e}^{2\gamma_0}}{f} \left(\frac{\mathrm{d}r^2}{\Delta_x} + \frac{\mathrm{d}x^2}{\Delta_x}\right).$$

 $\times (-2ma)$. The Kerr-Levi-Civita spacetime in spherical-like coordinates is given by

The Geometry

- Since $g_{\phi\phi}\equiv f>0$, the azimuthal Killing vector ∂_{ϕ} is spacelike for r>0, becoming null only on the axis $x=\pm 1$. Hence, no closed timelike curves arise.
- Introducing a new coordinate system $\{t, \tilde{\rho}, \tilde{z}, \phi\}$, the induced metric on the slices of constant t and \tilde{z} , near the symmetry axis, becomes

$$ds^2 \sim d\tilde{\rho}^2 + \frac{\tilde{\rho}^2}{256a^4m^4} d\phi^2.$$
 (14)

- Since $|\partial_{\phi}|^2 \sim \tilde{
 ho}^2$, there is no Misner string.
- However, there is a defect angle $2\pi(1-\vartheta)$ where $\vartheta=\pm 1/(16a^2m^2)$. To deal with that, we can redefine

$$\phi = 16a^2m^2\varphi,\tag{15}$$

and take φ as our new azimuthal coordinate. Then, the new spacetime is free of conical singularities as well.

• In coordinates $\{t, \rho, z, \varphi\}$, the asymptotic form of the metric reads

$$ds^{2} \underset{\rho,z \to \infty}{\sim} ds_{LC}^{2} - 64a^{3}m^{3} \frac{3\rho^{4} + 12\rho^{2}z^{2} + 8z^{4}}{\rho^{2}(\rho^{2} + z^{2})^{3/2}} dt d\varphi,$$
 (16)

where

$$ds_{LC}^2 = \rho^4 \left(-dt^2 + d\rho^2 + dz^2 \right) + \frac{256a^4 m^4}{\rho^2} d\varphi^2.$$
 (17)

- The latter belongs to Levi-Civita spacetimes.
- Since the asymptotic geometry is a rotating generalization of the LC geometry, we may formally address the solution as the Kerr–LC spacetime.

- Two limits can be taken in the Kerr-Levi-Civita spacetime:
 - 1 For m=0, the solution is nothing but the LC background (for $\sigma=1=k$)

$$ds^{2} = r^{4} \sin^{4} \theta \left[dt^{2} + dr^{2} + r^{2} d\theta^{2} \right] + \frac{d\phi^{2}}{r^{2} \sin^{2} \theta}.$$
 (18)

 ${\bf 6}{\bf 6}$ For a=0, we recover the Schwarzschild–Levi-Civita solution: a static black hole embedded in a LC cylindrical background

$$ds^{2} = r^{4} \sin^{4} \theta \left[\left(1 - \frac{2m}{r} \right) dt^{2} + \frac{dr^{2}}{1 - \frac{2m}{r}} + r^{2} d\theta^{2} \right] + \frac{d\phi^{2}}{r^{2} \sin^{2} \theta}.$$
(19)

- In both cases, we end up with static spacetimes.
- Thus, a spinning mass placed in a Levi-Civita background drags it asymptotically, producing a rotation effect, similar to the one of swirling spacetimes. But with the crucial difference that the background of the Kerr–LC is non-rotating.

ullet The metric component g_{rr} features poles as in Kerr black hole,

$$r_{+} = m + \sqrt{m^2 - a^2}, \quad r_{-} = m - \sqrt{m^2 - a^2},$$
 (20)

- Curvature invariants are regular there! In fact, they are regular everywhere! (Schwarzschild–LC is singular all along the symmetry axis)
 There is no ring singularity like in Kerr.
- Due to the swirling-like asymptotic behavior of the spacetime, it is impossible to define a Killing vector that remains timelike everywhere. This is a phenomenon already observed in magnetized or swirling black hole spacetimes, ¹⁰ where the asymptotic dragging of inertial frames prevents a global timelike direction. Equivalently, the ergoregions extend to infinity in the Kerr-LC spacetime:

¹⁰G.W. Gibbons, A.H. Mujtaba, and C.N. Pope, CQG (2013). J.B. et al, EPJC (2024). A. Vigano, 2211.00436 (2022)

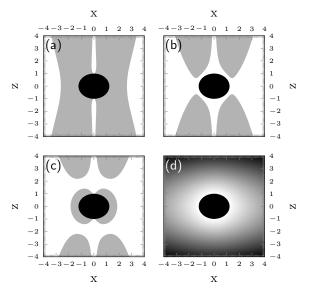


Figure: Cross section, taken at y=0, of the ergoregion (gray fill) dressing the event-horizon of a Kerr–LC black hole with $r_+=1$ and $r_-=1/2$ in rotating frames with angular velocity $\alpha=0$ (a), $\alpha=1.64$ (b), and $\alpha=3$ (c).

One last comment regarding the similarities with swirling spacetimes:

• In a Kerr spacetime, the asymptotic geometry is static; the angular velocity falls off like $\sim 1/r^3$. In the Kerr–LC spacetime, we have that

$$\Omega \underset{r \to \infty}{\sim} \frac{3 + 6x^2 - x^4}{8am} r. \tag{21}$$

 It is rather reminiscent of what happens in spacetimes describing black holes embedded into a swirling universe.

Final remarks

- We have constructed a novel rotating vacuum solution of Einstein's field equations: Kerr–Levi-Civita black hole.
- It is a rotating generalization of the recently studied Schwarzschild– Levi-Civita black hole.
- Completely regular: Free of curvature singularities, conical defects, spinning strings, and closed timelike curves.
- Similarities with swirling spacetimes; however, the frame-dragging in swirling black holes exists even if we remove the mass source, be it static or non-static, due to the intrinsic rotation of the background. On the other hand, dragging in the Kerr–LC spacetime is solely due to the angular momentum $J \equiv am$ of the Kerr seed.

Thank you!