Kerr—Levi-Civita black hole: A new rotating
spacetime in vacuum
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Introduction

® To date, only two exact solutions with well-defined static limits are
known to describe the exterior gravitational field of a spinning mass
in vacuum.

® The first is the Kerr metric,! which remains the most astrophysically
relevant solution to Einstein's field equations, underpinning much of
our theoretical understanding of rotating black holes.

® The second is its less familiar generalization, the Tomimatsu—Sato
metric.2

® Unlike the Kerr metric, the Tomimatsu—Sato solution does not reduce
to the Schwarzschild geometry in the limit of vanishing angular mo-
mentum, but to a class of Weyl metrics known as Zipoy—Voorhees
spacetimes.3

® The latter represents in the Weyl representation, a finite thin rod of
mass M and size 2[, with an arbitrary linear density.

LR.P. Kerr, PRL (1963)
2A. Tomimatsu and H. Sato, PRL (1972)
3D.M. Zipoy, JMP (1966). B.H. Voorhees, PRD (1970)



® Stationary and axisymmetric geometries in four dimensions are charac-
terized by the action of a group R x SO(2) under which the spacetime
metric remains invariant.

® |f the orbits of R x SO(2) (surfaces of transitivity) are everywhere
orthogonal to a family of hypersurfaces defined by the remaining, non-
Killing coordinates of the spacetime (meridional surfaces), then the
spacetime is said to be circular, and the action of the group is said to
be orthogonally transitive.

® Upon establishing circularity, stationarity, and axisymmetry, the most
general spacetime is described by the LWP metric, either in its stan-
dard electric form or in its magnetic representation.



LWP spacetimes and Ernst scheme
® In the canonical Weyl coordinates denoted by {t, p, z, ¢}, they read

ds® = —f (dt — wdg)® + % [ (dp* +d2%) +p%de’], (1)

ds? = f (dg —wdt)® + % [ (dp? +d2%) = p* ], (2)

where f, w, and ~y are functions of p and z only.
® |t can be shown that Einstein's equations reduce to the complex Ernst
equation®

Re () V€ = VE - V€, (3)
where £ is the complex Ernst gravitational potential
£=—f—ix *)

and yx is provided by the relevant twist equation

2
X Uy =TV (5)

4F.J. Ernst, PR (1968)



The formalism offers two main advantages:

@® We reduce the problem to solving a PDE system in Euclidean space

with cylindrical coordinates.

@ Einstein(—Maxwell) equations can be shown to display a set of hidden

Lie point symmetries. These symmetries are

Gl[a] : (50,‘1)0) — (5,(13)
GQ[Q] : (50,(130) — (5,(13)
Dle] : (&, @) — (€, D)
Elc] : (&, Po) — (€, D)

5
(€ +ia, Py), (6a)
(50 —2ady — aa, by + a),(6b)
(Eggo, E‘I)o), (6C)
(507 (po)
1+ ic& ’ (6d)
oo i)
1—-28% — BB&

From known solutions (&y, ®() we can construct new solutions (£, @)

with E[c], H[5].

5Exact solutions of Einstein'’s field equations, Cambridge Monographs on Mathematical Physics (2003)



® When applying Ehlers or Harrison on a (asymptotically flat) seed
spacetime written in electric LWP form the resulting spacetime is
asymptotically flat:

©® Ehlers: Schwarzschild E?] Taub-NUT

@ Harrison: Schwarzschild —[>] Reissner—Nordstrom
H[B

® When applying on a seed in a magnetic LWP form the asymptotic
behaviour of the seed changes to a Levi-Civita-like spacetime

ds® = —p'7 dt® + B2p* GV (dp® +d2%) + p* 2 dg”. ()

@ Ehlers: Minkowski E—[>] Swirling background

2
ds® = HPW (do+4jzdt)” + (1+ 5°p") (—dt* +dp” +d2°) .

@ Harrison: Minkowski H?%] Melvin background

2 E222 2 2 2 E22722 2
ds® = |14 —p (—dt +dp?+d= )+ L+ o p2de?, A= Ezdt.



® Relevant to our construction is the discrete inversion transformation
that arises from a Weyl rescaling, a gravitational gauge transforma-
tion, and an Ehlers in the limit where the Ehlers parameter is taken
to infinity®

1
I:&+—E&:=—. (8)
&
® For a seed Ernst potential & = — fy — ixq, the inversion acts as:
Jo X0
f = 3 X = ——5 5 - 9
TS ERY: ©)

e Buchdahl gave an intuitive metric version in the static case:” If
ds2 = g, dat da” = F(2F)(dz®)? + g;;(2") da’ da?, (10)
is a vacuum solution, then the reciprocal
ds? = F~(da")? + F?g;; da’ da?, (11)

is also a solution.

6. Ehlers, Collog. Int. CNRS (1962)
7H.A. Buchdahl, AJP (1956)



The Kerr—Levi-Civita spacetime

® Similar to Ehlers and Harrison: It can be proven that the electric in-
version does not transform any solution of the Plebanski—Demianski
family. The Ernst potential remains asymptotically flat. This is con-
sistent with uniqueness theorems.®

® Then the importance of expressing the seed metric in a magnetic form
becomes fundamental.

® Example: Schwarzschild-Levi-Civita black hole with Buchdahl theo-
9
rem.

® We construct the Kerr—Levi-Civita spacetime starting from the Kerr
metric as a seed, expressed in magnetic LWP form with spherical-like
coordinates {t,r,x = cosf, ¢}.

8B. Carter, PRL (1971)
9).B., A. Cisterna, M. Hassaine, and J. Oliva, EPJC (2024)



Explicitly:

AA A2 2o /dr? da?
dsngo(d¢—w0dt)2—T+ 7 (A + X ) (12)
where (2 292 27 A
re+a%)" —a" A,
fO(T‘, x) = Ax 92 )
wo(r,z) =a (r* +a%) — 4,
0" (r2 + a?)? — a2A A, (13)

eQ’yg(r,m) _ Am [(7,2 + (12)2 — a2ArAm] s
An(r)=r*=2mr+a®, Ag(z)=1-27
and @*(r,z) = r? + a*x?.

The function f follows directly, while w is obtained from the seed wq via
the twist equation (5), giving Xo.



Thus, we end up with

9 (7"2 + a2)2 —a?A A,
i dm2a22? [a2A2 4+ 02(A, + 2)]° + A2 [(r2 4+ a2)2 — a2A, AL

flr,z)y=A

(2a®m — 3a®r + r*)Arz* — 67(a® + r2)Arz? + (2a®°m + a®r + %) (a? — 6mr — 3r?)

w(r z) = Aya?z? + r(2a?m + a?r + r3)

X (—2ma).

The Kerr—Levi-Civita spacetime in spherical-like coordinates is given by

2 270 2 2
s = f(d¢ — wdp)? — DrBedl e <dr dz )

Y N



The Geometry

Since g4 = f > 0, the azimuthal Killing vector 0, is spacelike for
r > 0, becoming null only on the axis = +1. Hence, no closed
timelike curves arise.

Introducing a new coordinate system {t,p, Z, ¢}, the induced metric
on the slices of constant ¢ and z, near the symmetry axis, becomes

~2

2 ~2 p 2

Since |9p|? ~ p?, there is no Misner string.

However, there is a defect angle 27(1 — ) where ¥ = +1/(16a%m?).
To deal with that, we can redefine

¢ = 16a>m?2p, (15)

and take ¢ as our new azimuthal coordinate. Then, the new spacetime
is free of conical singularities as well.



® In coordinates {t, p, z, ¢}, the asymptotic form of the metric reads

3pt +12p%22% + 824

2 2 3,3
ds e dsic — 64a°m R+ 2 dtde, (16)
where
256a*m*
dsic = p* (—dt? +dp® +d=?) + % dip? (17)

® The latter belongs to Levi-Civita spacetimes.

® Since the asymptotic geometry is a rotating generalization of the LC
geometry, we may formally address the solution as the Kerr—LC space-
time.



® Two limits can be taken in the Kerr—Levi-Civita spacetime:

@ For m = 0, the solution is nothing but the LC background (for o =
1=k)

de?

r2sin® @

ds® =r*sin® 0 [dt2 +dr? 472 d02] + (18)

@ For a = 0, we recover the Schwarzschild—Levi-Civita solution: a static
black hole embedded in a LC cylindrical background

de¢?

r2 sin? 0’
(19)

2
d52=7~4sm49{<1—27> dt? +1 dr e +r°de?

® |n both cases, we end up with static spacetimes.

® Thus, a spinning mass placed in a Levi-Civita background drags it
asymptotically, producing a rotation effect, similar to the one of swirling
spacetimes. But with the crucial difference that the background of
the Kerr—LC is non-rotating.



® The metric component g, features poles as in Kerr black hole,

re=m+vm?2—a? r_=m—vm?2—a? (20)

e Curvature invariants are regular there! In fact, they are regular ev-
erywhere! (Schwarzschild-LC is singular all along the symmetry axis)
There is no ring singularity like in Kerr.

® Due to the swirling-like asymptotic behavior of the spacetime, it is
impossible to define a Killing vector that remains timelike everywhere.
This is a phenomenon already observed in magnetized or swirling black
hole spacetimes,'® where the asymptotic dragging of inertial frames
prevents a global timelike direction. Equivalently, the ergoregions
extend to infinity in the Kerr—LC spacetime:

106 w. Gibbons, A.H. Mujtaba, and C.N. Pope, CQG (2013). J.B. et al, EPJC (2024). A. Vigano, 2211.00436 (2022)
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Figure: Cross section, taken at y = 0, of the ergoregion (gray fill) dressing the
event-horizon of a Kerr—LC black hole with ;. = 1 and r— = 1/2 in rotating
frames with angular velocity o = 0 (a), & = 1.64 (b), and a = 3 (c).



One last comment regarding the similarities with swirling spacetimes:

® |n a Kerr spacetime, the asymptotic geometry is static; the angular
velocity falls off like ~ 1/r%. In the Kerr—LC spacetime, we have that

3+ 622 — 2t
Q ~ — 7. 21
r—00 Sam " ( )

® |t is rather reminiscent of what happens in spacetimes describing black
holes embedded into a swirling universe.



Final remarks

We have constructed a novel rotating vacuum solution of Einstein's
field equations: Kerr—Levi-Civita black hole.

It is a rotating generalization of the recently studied Schwarzschild—
Levi-Civita black hole.

Completely regular: Free of curvature singularities, conical defects,
spinning strings, and closed timelike curves.

Similarities with swirling spacetimes; however, the frame-dragging in
swirling black holes exists even if we remove the mass source, be it
static or non-static, due to the intrinsic rotation of the background.
On the other hand, dragging in the Kerr—LC spacetime is solely due
to the angular momentum J = am of the Kerr seed.



Thank you!



