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Motivation
”The physical ones”

Motivation

Black Hole accretion system: understanding the motion of test particles using simplified
models via numerical simulations which account only for the gravitational fields and
adding gradually features that make the model “as astrophysical” as possible.

Assumptions

1 Stationary, axisymmetric spacetime: Schwarzschild black hole plus a finite thin disc;

2 Disc matter follows circular orbits (circular spacetimes);

3 Keplerian condition on test-particles motion.
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Stationary, axisymmetric systems
Geodesic motion in static, axially-symmetric, orthogonally transitive spacetimes

Metric

ds2 = −e2ν(r,θ)dt2+B(r , θ)2r 2e−2ν(r,θ) sin2 θ(dϕ−ω(r , θ)dt)2+e [2λ(r,θ)−2ν(r,θ)](dr 2+r 2dθ2)

Remarks

Weyl coordinate ρ = r sin θ, z = r cos θ

ν, λ, ω,B to be determined by Einstein field equations

B: B,ρρ +
2Bρ

ρ
+ B,zz = 8πB(Tρρ + Tzz )

vacuum : Tµν = 0

{
B = 1

B = 1 − M2

4(ρ2+z2)
= 1 − M2

4r2

⇒ horizon

{
ρ = 0, |z| ≤ M

r = M
2

After applying adequate boundary conditions at infinity, on the axis and at the horizon, the remaining
non-liner coupled equations must be solved for ν and ω and finally λ is obtained by line integration.

Analytically solution only for static case ω = 0

Non static case:

1 generating technique
2 perturbative approach ✓ Will,1974

Semerák, O.; Č́ıžek, P. Rotating Disc around a Schwarzschild Black Hole. Universe 2020, 6, 27.
P. Č́ıžek and O. Semerák 2017 ApJS 232 14
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How does the disk’s rotation, that is the
”frame-dragging”, influence the chaotic

dynamics of geodesics?

Overall picture from previous literature

The frame dragging induced by rotation of the system seems to lead to a
suppression of the chaotic behaviour ?;

The counter-rotating motion appears to be more unstable than the co-rotating
motion

Chaos and rotating black holes with halos
P.S. Letelier (Campinas State U., IMECC), W.M. Vieira (Campinas State U., IMECC), Phys.Rev.D 56
(1997), 8095-8098

Stability of Orbits around a Spinning Body in a Pseudo-Newtonian Hill Problem
A.F. Steklain (Campinas State U., IMECC), P.S. Letelier (Campinas State U., IMECC), Phys.Lett.A 373
(2009), 188-194.

Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo Sankhasubhra
Nag, Siddhartha Sinha, Deepika B. Ananda, Tapas K Das, Astrophys.Space Sci. 362 (2017) 4, 81.

Stealth Chaos due to Frame Dragging Andrés F. Gutiérrez-Ruiz, Alejandro Cárdenas-Avendaño, Nicolás
Yunes, Leonardo A. Pachón,abff99
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Physical interpretation & Keplerian-compatible parameters

Physical interpretation of the disc

Two standard representations:

One–component perfect fluid: specified by surface density, azimuthal pressure, and circular
velocity;

Two–stream dust: two counter–rotating geodesic streams on the disc with surface densities
σ± and velocities v± in the stationary limit. Physical admissibility requires σ± ≥ 0.

Keplerian regime on parameter’s space

σ−

(xin + xout
2

)
= 0, S = k(x∗)W .

1 Astrophysical meaning: retrograde stream extinguished, prograde circular flow
retained; rotation consistent with Keplerian scaling Ω ∝ r−3/2 at large radii.

2 Stream balance: minimises counter–rotating stream imbalance, reducing derivative
jumps of the metric across the disc plane.

3 Parameter-space boundary: separates the admissible region S≥k(x∗)W from the
unphysical one S<k(x∗)W .

Claudia Caputo (Charles University) Geodesic Chaos and Dragging 6 / 24



Physical interpretation & Keplerian-compatible parameters

Physical interpretation of the disc

Two standard representations:

One–component perfect fluid: specified by surface density, azimuthal pressure, and circular
velocity;

Two–stream dust: two counter–rotating geodesic streams on the disc with surface densities
σ± and velocities v± in the stationary limit. Physical admissibility requires σ± ≥ 0.

Keplerian regime on parameter’s space

σ−

(xin + xout
2

)
= 0, S = k(x∗)W .

1 Astrophysical meaning: retrograde stream extinguished, prograde circular flow
retained; rotation consistent with Keplerian scaling Ω ∝ r−3/2 at large radii.

2 Stream balance: minimises counter–rotating stream imbalance, reducing derivative
jumps of the metric across the disc plane.

3 Parameter-space boundary: separates the admissible region S≥k(x∗)W from the
unphysical one S<k(x∗)W .

Claudia Caputo (Charles University) Geodesic Chaos and Dragging 6 / 24



Investigating dragging effect

Physical System: Schwarzschild Black Hole + Rotating Thin Disk
(Will-Semerák-Ĉiẑek solution).

The disk introduces non-integrable perturbations to the spacetime metric.

Primary Chaos Source: Metric discontinuities at the sharp disk edges act as sites
for impulsive scattering.

Open Question: How does the disk’s rotation (frame-dragging) influence the
chaotic dynamics of geodesics?

The Dragging Parameter W

W > 0: Co-rotating (R)
W < 0: Counter-rotating (CR)

W = 0: Static (S) case
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Methods for detecting choas
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Poincaré surface of section

Let H be a Hamiltonian autonomous system with 2n degrees of freedom. Since the
energy is conserved, the phase space can be reduced to 2n − 1-surfaces.
A surface of section is then obtained by

1 qi = const, set another degree of freedom as constant

2 take the value of the other 2n− 2 degrees of freedom (p1, . . . , p(n−2), q1, . . . , q(n−2)),
each time the orbits cross the hyper surface defined by qi = const (in a fixed
direction)

Remarks

Resonant tori: manifest itself as infinite set of points;

Non- resonant tori: appear as a succession of points which cover densely the
invariant curves.
PS give an overall view of the dynamics of the system and of the accessible
states of the system
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Local vs Global Indicators in Frame-Dragging Settings

Limitations of Local Approaches

Sensitive to initial conditions

Provide limited information about phase space structure

Difficult to characterize ”stickiness” and weak chaos

Cannot quantify overall system chaoticity

The Dragging Effect Challenge

Need methods that capture global chaotic properties

Requires statistical approach beyond individual trajectories

Strategy: Combine local indicators (instantaneous stretching) with a global
indicator(phase-space information production):

1 Local: Lyapunov exponents; fast diagnostics FLI and MEGNO.

2 Global: Kolmogorov–Sinai (KS) entropy to aggregate over the invariant measure.
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Lyapunov Exponents: Local Chaos Measure

Definition

Maximum Lyapunov Exponent (mLE) quantifies exponential divergence of nearby
trajectories:

λmax = lim
t→∞

1

t
ln
∥δx(t)∥
∥δx(0)∥ , δ̇x = Df (x(t)) δx

λ > 0: Chaotic orbit (exponential divergence)

λ = 0: Regular orbit (polynomial divergence)

λ < 0: Stable fixed point (convergence)

Local method: Characterizes behaviour in specific phase space regions.

Numerical estimation: Computed via the Benettin (Gram–Schmidt) algorithm;
finite-time estimates diagnose localized instability and stickiness1.

1Benettin et al. (1980) - Lyapunov exponents computation
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Fast Diagnostics: FLI and MEGNO (Definitions)

Definition:Fast Lyapunov Indicator (FLI)

FLI(t) = ln
∥ξ(t)∥
∥ξ(0)∥

1 Chaotic orbits: FLI(t) ∼ λt;

2 Regular orbit: sub-linear/polynomial growth

Definition:Mean Exponential Growth of Nearby Orbits (MEGNO)

Y (t) =
2

t

∫ t

0

d

ds

(
ln ∥ξ(s)∥

)
s ds

1 Chaotic orbits: Y (t) ∼ λt (slope ≈ λ).

2 Regular orbit: Y (t) → 2.

Advantages: Rapid discrimination (pre-asymptotic), complementary to rigorous
Lyapunov estimates.

Froeschlé et al. (1997) - FLI definition and applications.
Cincotta & Simó (2000) - MEGNO method.
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Froeschlé et al. (1997) - FLI definition and applications.
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Kolmogorov-Sinai Entropy: Global Chaos Measure

Definition:Kolmogorov-Sinai Entropy

Measures the rate of information production in dynamical systems:

hKS = sup
P

lim
t→∞

1

t
H(P t)

Quantifies overall unpredictability of the system

Related to Lyapunov exponents through Pesin’s formula:

hKS =

∫
M

∑
λi (x)>0

λi (x) dµ(x)

Global method: Integrates over the entire phase space.

Pesin (1977) - Entropy-formula connection.
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Numerical Estimation of KS Entropy

Direct method: Partition phase space and track trajectory visits

Lyapunov-based method: Sum of positive Lyapunov exponents

Return-time statistics: Analyse distribution of recurrence times

Poincaré section approach: Measure complexity on reduced phase space

Practical Implementation

hKS ≈
∑

Tiλi∑
Ti

Time-weighted average of local Lyapunov exponents along trajectories
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Numerical Methodology summary

Qualitative Tool

Poincaré Surfaces of Section (PSS)

Plot crossing points in phase space.

Colored by the MEGNO chaos
indicator.

Reveals structure: KAM tori vs.
chaotic seas.

Quantitative Tool

Kolmogorov-Sinai Entropy (hKS)

Measures the global rate of chaos
production.

Calculated as:

hKS = θ · λ̄

θ: Fraction of chaotic orbits.

λ̄: Mean Lyapunov exponent of
chaotic orbits.
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The Four Dynamical Cases Investigated

Case Orbital domain Disk crossings? Primary mechanism

1 r > rSch, rin = 7M
✓

Edge scattering at disk
boundaries

2 r > rSch, rin =
18M, rout = 22M

✓
Scattering +
effective-potential
modulation

3 rSch < r < rin = 16M
✗

None (integrable
baseline)

4 rSch < r < rin = 29M
✗

Weak resonance
breaking
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Case 1 — (E = 0.945, Lz = 3.75, xin = 6, xout = 10, S = 4.97359× 10−4,
Md ≈0.1M )
Static → Co-rotating → Counter-rotating

S1: W = 0 (static)
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Case 2 — (E = 0.98, Lz = 3.95, xin = 17, xout = 21, S = 2.0941× 10−5,
Md ≈ 0.01M)
Static → Co-rotating → Counter-rotating

2S1721: W = 0 (static)
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Case 2 — (E = 0.98, Lz = 3.95, xin = 17, xout = 21, S = 2.0941× 10−5,
Md ≈ 0.01M)
Static → Co-rotating → Counter-rotating

6R1721: W = +4.128 (sub-K)
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Case 2 — (E = 0.98, Lz = 3.95, xin = 17, xout = 21, S = 2.0941× 10−5,
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Case 3 — (E = 0.949, Lz = 3.75, xin = 15, xout = 18,

S = 3.21525× 10−4, Md ≈ 0.1M)
Static → Co-rotating → Counter-rotating

INDS1: W = 0 (static, all regular)
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Case 3 — (E = 0.949, Lz = 3.75, xin = 15, xout = 18,

S = 3.21525× 10−4, Md ≈ 0.1M)
Static → Co-rotating → Counter-rotating
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Case 4 — (E = 0.965, Lz = 3.76, xin = 28, xout = 30, S = 2.74405× 10−4,
disk mass ≃ 0.1M)
Static → Co-rotating → Counter-rotating

S2830M01: W = 0 (static)
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Quantitative synthesis: global chaos trends via KS-entropy
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Conclusions

Synthesis: key observations and qualified evidence

1 Case 1: hKS ∼ 10−3; strong chaos dominated by edge scattering; CR > R.
Qualification: strength and morphology are modulated by W and its direction.

2 Case 2: hKS ∼ 10−4−10−3; disruptive chaos with pronounced asymmetry; R ≫ CR.
Qualification: again controlled by W and rotation sense.

3 Case 3: hKS = 0 in our sets: the disk perturbation is too small compared with
Schwarzschild for the chosen (E , Lz ,S , radii).
Qualification: this is not a general rule “no crossings ⇒ no chaos”.

4 Case 4: hKS ∼ 10−6−10−5; weak chaos without crossings, most evident in
counter-rotation and increasing with |W |.
Qualification: a thin chaotic layer (MEGNO ≳ 100) appears when the disk potential and
frame dragging are non-negligible.

Main Message

Chaotic dynamics is primarily driven by scattering at the sharp disk
edges.
Frame dragging W is a secondary control parameter that enhances or
suppresses chaos depending on the orbital domain and the rotation sense
(R vs. CR).
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Quantitative synthesis: global chaos trends via θ

Claudia Caputo (Charles University) Geodesic Chaos and Dragging 1 / 14



Example application Gaussian Mixture Model (GMM)

Figure: Enter Caption
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Quantity Value

Total orbits Ntot 263

Chaotic orbits Ncha (MEGNO ≥ 6.0) 227

Chaotic time fraction θ 0.863119

Selected components M∗ (GMM) 2

hglobal
KS (T ) 1.972058× 10−3

hglobal
KS (∞) 1.972058× 10−3

Components (GMM)

layer µm ccond cglob σm

1 3.503619× 10−3 0.5165 0.4458 4.921810× 10−4

2 9.829661× 10−4 0.4835 0.4173 3.015106× 10−4

REG 0.000000× 100 0.0000 0.1369 –

Table: Summary of the KS entropy calculation for S1
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Estimating GMM Peaks and Their Uncertainty

1. Data and selection. For each orbit i , we label it chaotic using the strict MEGNO gate
(Y ≥ 6). Let Ntot be the number of sampled orbits, Ncha the chaotic subset size, and
θ = Ncha/Ntot the global chaotic fraction. From chaotic orbits we collect one positive rate
per orbit (e.g. local Lyapunov estimate), denoted λi (T ).

2. Model (1D GMM). We fit a Gaussian Mixture Model (EM algorithm) to {λi (T )}cha with
candidate component counts M = 1, . . . ,Mmax and select M∗ by BIC. We use diagonal
covariances with a small regularization to avoid degeneracy and reject spurious tiny
components via a minimum weight floor.

3. Peaks (“layers”). Each component m has mean µm, standard deviation σm, and chaotic-set
weight pm (

∑
m pm = 1). We report:

ccond,m = pm, cglob,m = θ pm.

For well-separated components, the peak location is µm. (We require
|µm − µm′ | ≳ 2(σm + σm′ ) to call peaks distinct; otherwise we interpret them as a single
broad peak.)

Claudia Caputo (Charles University) Geodesic Chaos and Dragging 4 / 14



4. Global KS-entropy (at time T ).

hglobalKS (T ) =
M∗∑
m=1

µm cglob,m = θ
M∗∑
m=1

pmµm,

since regular orbits contribute zero.

5. Uncertainty. The effective sample in component m is Nm = Ncha pm. The (asymptotic)
standard error of the peak position is

σtot(µm) =
σm√
Nm

=
σm√

Ncha pm
.

A conservative first-order error for hglobalKS (T ) (ignoring covariances) is

σ2
tot

[
hglobalKS

]
≈

∑
m

c2glob,m SE(µm)
2 + θ2

∑
m

µ2
m

pm(1− pm)

Ncha
+

(∑
m

µmpm
)2 θ(1− θ)

Ntot
.

When Ncha = 0, no GMM is fitted, λ+ = 0, and hKS = 0.

Claudia Caputo (Charles University) Geodesic Chaos and Dragging 5 / 14



FLI evolution in S1 (log–log view)

Each curve: one geodesic; ordinate is
log10(FLI/τ) vs. log10 τ .

Regular motion: after transients,
trajectories follow near power–law
decay (approximately straight lines
with negative slope).

Chaotic candidates: curves deviating
upward or flattening (relative growth
of FLI), often separating from the
bulk.

Use: fast, population–level screening
of divergence rates and early outlier
detection.
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Joint indicators: FLI and MEGNO (population view)

Simultaneous time–evolution of FLI
and MEGNO for many orbits.

Regular: MEGNO saturates near
⟨Y ⟩ ≈ 2 and FLI grows slowly.

Chaotic: MEGNO grows
approximately linearly with time and
FLI rises rapidly.

Use: cross–validation of
classifications and identification of
time windows where diagnostics
agree.
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FLI evolution (linear scale)

Same ensemble as Slide 2 but with
linear ordinate for FLI.

Highlights separation between slowly
growing (regular) and rapidly growing
(chaotic) trajectories.

Useful to inspect transients,
saturation, and the spread of growth
rates without logarithmic
compression.
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mLCE distribution (violin plot)

Violin plots compare the distributions
of estimated maximal Lyapunov
exponents (mLCE) from two
estimators.

Center lines indicate medians; the
thickness encodes the probability
density (spread).

Interpretation: differences in median
and spread reflect estimator bias and
variance; narrow violins imply more
stable estimates.

Use: choose the estimator and
quantify distributional uncertainty
across the orbit sample.
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Definition of chaos

Khaos

The word khaos coming from Ancient Greek mythology and literally means ”gap,
abyss”referring to the primeval emptiness of the universe before things came into being
or the abyss of Tartarus, the underworld.

Chaos Theory
It is a mathematical field of study whose main aim is to study of the non-linear dynamics

of complex systems whose behaviour at first sight seems to be random and not
predictable, chaotic, but it is indeed deterministic.

1 long-term predictions are in general impossible for this systems
2 sensitive dependence on initial conditions

”...a butterfly flapping its wings in Brazil can produce a tornado in Texas.”
Edward Norton Lorenz (meteorologist)
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Integrable systems in brief
Liouville-Arnold Theorem

Let (M,H(p̄, q̄)) be a nd Hamiltonian system for which exists a set of n functions, fi
which are first integrals of the motion and are in involution :{fi , fj} = 0, ∀i , j
If the manifold defined by the level sets of these functions is compact and connected

Mc = {(p̄, q̄) : fi (p̄, q̄) = ci}, ci ∈ R

it is diffeomorphic to a n torus (T n = S1x . . . xS1 n times) and it is possible to perform a
canonical transformation in action-angle coordinates

(p̄, q̄) −→ (Ī , θ̄) ∈ RnxT n ⇒ H(Ī , θ̄) = h(Ī ) (1)

where the motion of the angle-variables is linear and the frequencies fixed.

Ī = I0 = const θ̄ = θ̄0 + ω(Ī0)t. (2)

The system is then integrable by quadrature and the phase-space will results
foliated in invariant tori each corresponding to a given set of frequencies.
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Resonances

Let it be det
∣∣∣∂ω̄/∂ Ī ∣∣∣ ̸= 0 (non-degenerate system), then there if the frequencies satisfy a

relation of the following type
Resonant condition

n∑
i=1

kiωi = 0

ki ∈ Z , |k| =
∑n

i=1 |ki | ≠ 0
Depending on the number of such relations, m, there can be different consequences:

1 m = 0 ”Irrational ratio between frequencies”: The motion is on T (n) and it is
”quasi-periodic”, that is the orbit fill the tori densely but they never close.

2 0 < m < n − 1 ”Not all frequencies are linear independent”: The motion is on
T (n−m) and it is ”quasi-periodic” on them, that is the orbit fill the tori densely but
they never close.

3 m = n − 1 ”All frequencies are proportional”: The motion is on T and it is
”periodic”, that is the orbit close.
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Quasi-Integrable systems in brief
Kolmogorov-Arnold-Moser (KAM) Theorem

A non-degenerate, integrable system with n degrees of freedom, when slightly perturbed

H(θ̄, Ī ) = h(Ī ) + ϵH1(θ̄, Ī )

must satisfy the diophantic condition∣∣∣ n∑
i=1

ωiki
∣∣∣ > O(ϵ)(∑n

i=1 |ki |
)d , ki ∈ N, d > (n − 1)

The motion still occur on tori, but they are deformed (KAM non-resonant tori),
while far away from the resonances, the phase-space appears very similar to the
correspondent unperturbed motion
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(1912) Last geometric theorem of Poincaré
Poincaré-Birkoff Theorem

When an integrable system is perturbed, the resonant tori are destroyed and only a
finite even number of fixed points of a given period survive. Half of them will be
stable points, the other half unstable points.

Consequences ⇒ Birkhoff chains

1 island of stability: They are set of resonant KAM curves around stable points,
characterized by particular value of the frequencies ratio (regular orbits).

2 Irregular orbits emanates from the asymptotic manifolds of unstable points
following complicated path and filling the chaotic layers.
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