General features of energy extraction from black holes through charged particle production

Filip Heida

Centro de Astrofísica e Gravitação, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Portugal CEICO, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

> based on work in progress expanding and reinventing the results of PhysRevD.105.024014

Penrose process and its improvements

- Penrose process requires high relative velocity of the fragments: J. Bardeen, W. Press, S. Teukolsky, Astrophys. J. **178**, 347 (1972).
- Two ways to ease the restriction
- 1) Inspired by Wald's weakly magnetised black-hole solution, include electromagnetic field and charged particles: S. M. Wagh, S. V. Dhurandhar, N. Dadhich, Astrophys. J. 290, 12-14 (1985).
- 2) Consider particle collisions instead of decay: T. Piran, J. Shaham,
- BSW effect for extremal Kerr seems ideal collisions with arbitrarily
- However, strict upper bounds on the extracted energy were found:

Penrose process and its improvements

- Penrose process requires high relative velocity of the fragments: J. Bardeen, W. Press, S. Teukolsky, Astrophys. J. 178, 347 (1972).
- Two ways to ease the restriction
- 1) Inspired by Wald's weakly magnetised black-hole solution, include electromagnetic field and charged particles: S. M. Wagh, S. V. Dhurandhar, N. Dadhich, Astrophys. J. 290, 12-14 (1985).
- 2) Consider particle collisions instead of decay: T. Piran, J. Shaham, J. Katz, Astrophys. J. Lett. **196**, L107 (1975).
- BSW effect for extremal Kerr seems ideal collisions with arbitrarily high centre-of-mass energy with particles coming from rest at infinity: M. Bañados, J. Silk, S. M. West, PRL 103, 111102 (2009).
- However, strict upper bounds on the extracted energy were found: T. Harada, H. Nemoto, U. Miyamoto, PRD 86, 024027 (2012). J. D. Schnittman, PRL 113, 261102 (2014).

Back to electrovacuum

- Electrostatic variant of the BSW effect for extremal Reissner-Nordström: O. B. Zaslavskii, JETP Letters 92, 571 (2010).
- No unconditional bounds on extracted energy in this case: O. B. Zaslavskii, PRD **86**, 124039 (2012).
- Obvious question: Does it work for something a bit more realistic?
- It does! (For extremal Kerr-Newman, even with $|Q| \ll M$)
- Unconditional bounds on extracted energy absent whenever $Qq_3 \neq 0$:
- This was derived assuming extremality and also the collision
- Another obvious question: What happens without these assumptions?
- In the following, I would like to sketch an answer to this question...

Back to electrovacuum

- Electrostatic variant of the BSW effect for extremal Reissner-Nordström: O. B. Zaslavskii, JETP Letters 92, 571 (2010).
- No unconditional bounds on extracted energy in this case: O. B. Zaslavskii, PRD **86**, 124039 (2012).
- Obvious question: Does it work for something a bit more realistic?
- It does! (For extremal Kerr-Newman, even with $|Q| \ll M$)
- Unconditional bounds on extracted energy absent whenever $Qq_3 \neq 0$: FH, J. Bičák, O. B. Zaslavskii, PRD **100**, 064041 (2019). FH, J. P. S. Lemos, O. B. Zaslavskii, PRD 105, 024014 (2022).
- This was derived assuming extremality and also the collision happening at infinitesimal coordinate distance from the horizon...
- Another obvious question: What happens without these assumptions?
- In the following, I would like to sketch an answer to this question...

Back to electrovacuum

- Electrostatic variant of the BSW effect for extremal Reissner-Nordström: O. B. Zaslavskii, JETP Letters 92, 571 (2010).
- No unconditional bounds on extracted energy in this case: O. B. Zaslavskii, PRD **86**, 124039 (2012).
- Obvious question: Does it work for something a bit more realistic?
- It does! (For extremal Kerr-Newman, even with $|Q| \ll M$)
- Unconditional bounds on extracted energy absent whenever $Qq_3 \neq 0$: FH, J. Bičák, O. B. Zaslavskii, PRD 100, 064041 (2019). FH, J. P. S. Lemos, O. B. Zaslavskii, PRD 105, 024014 (2022).
- This was derived assuming extremality and also the collision happening at infinitesimal coordinate distance from the horizon...
- Another obvious question: What happens without these assumptions?
- In the following, I would like to sketch an answer to this question...

Outline of the setup

• First-order EOM for a test particle with mass m in an axially symmetric, stationary spacetime can be written using function X

$$\frac{\mathrm{d}\,t}{\mathrm{d}\lambda} \equiv p^t = \frac{X}{N^2} \qquad \qquad \frac{\mathrm{d}\,r}{\mathrm{d}\lambda} \equiv p^r = \frac{\sigma}{N\sqrt{g_{rr}}}\sqrt{X^2 - N^2\left(m^2 + \frac{p_\varphi^2}{g_{\varphi\varphi}}\right)}$$

- Function X has the physical meaning of "locally measured energy redshifted to spatial infinity": $NE_{LNRF} = X = -p_t - \omega p_{\omega}$
- For Schwarzschild, X is just the conserved energy, i.e. $X \equiv E$; Penrose process is possible only when X has spatial dependence
- $p^r \in \mathbb{R} \Longrightarrow$ function X cannot change sign (assuming $g_{\varphi\varphi} > 0$)

$$|X| \geqslant N\sqrt{m^2 + \frac{p_{\varphi}^2}{g_{\varphi\varphi}}} > 0$$

• Hence, there must be a turning point between two points with

Outline of the setup

• First-order EOM for a test particle with mass m in an axially symmetric, stationary spacetime can be written using function X

$$\frac{\mathrm{d}\,t}{\mathrm{d}\lambda} \equiv p^t = \frac{X}{N^2} \qquad \qquad \frac{\mathrm{d}\,r}{\mathrm{d}\lambda} \equiv p^r = \frac{\sigma}{N\sqrt{g_{rr}}}\sqrt{X^2 - N^2\left(m^2 + \frac{p_\varphi^2}{g_{\varphi\varphi}}\right)}$$

- Function X has the physical meaning of "locally measured energy redshifted to spatial infinity": $NE_{LNRF} = X = -p_t - \omega p_{\omega}$
- For Schwarzschild, X is just the conserved energy, i.e. $X \equiv E$; Penrose process is possible only when X has spatial dependence
- $p^r \in \mathbb{R} \Longrightarrow$ function X cannot change sign (assuming $g_{\varphi\varphi} > 0$)

$$|X| \geqslant N\sqrt{m^2 + \frac{p_{\varphi}^2}{g_{\varphi\varphi}}} > 0$$

• Hence, there must be a turning point between two points with

Outline of the setup

• First-order EOM for a test particle with mass m in an axially symmetric, stationary spacetime can be written using function X

$$\frac{\mathrm{d}\,t}{\mathrm{d}\lambda} \equiv p^t = \frac{X}{N^2} \qquad \qquad \frac{\mathrm{d}\,r}{\mathrm{d}\lambda} \equiv p^r = \frac{\sigma}{N\sqrt{g_{rr}}} \sqrt{\frac{X^2 - N^2\left(m^2 + \frac{p_{\varphi}^2}{g_{\varphi\varphi}}\right)}{g_{\varphi\varphi}}}$$

- Function X has the physical meaning of "locally measured energy redshifted to spatial infinity": $NE_{LNRF} = X = -p_t - \omega p_{\omega}$
- For Schwarzschild, X is just the conserved energy, i.e. $X \equiv E$; Penrose process is possible only when X has spatial dependence
- $p^r \in \mathbb{R} \Longrightarrow$ function X cannot change sign (assuming $g_{\varphi\varphi} > 0$)

$$|X| \geqslant N\sqrt{m^2 + rac{p_{\varphi}^2}{g_{\varphi\varphi}}} > 0$$

• Hence, there must be a turning point between two points with different signs of function X (we selected X > 0 to preserve causality)

- Let us consider a model process in which a collision of two uncharged particles gives rise to two oppositely charged particles
- For uncharged particles, $-p_t \equiv E$ and $p_{\varphi} \equiv L$ are conserved; function X is given by $X = E - \omega L$; only ω spatially dependent
- Provided the asymptotics is healthy (no Melvin!) $|\omega_H| \geqslant |\omega| > 0$
- Considering only particles that can get close to the black hole leads to
- Marginally bound particles $(E \approx m)$ with I (defining L = Im) in a
- Photons (m = 0) with impact parameter b (defining L = bE) in a
- Function X is additive and conserved at the instant of collision:
- Bound on the total value: $X_3^C + X_4^C = X_0 = X_1^C + X_2^C \le f_{in}(E_1, E_2)$
- Since X must be positive, bound works individually: $X_{3,4}^{\mathbb{C}} \leq f_{\text{in}}(E_1, E_2)$

- Let us consider a model process in which a collision of two uncharged particles gives rise to two oppositely charged particles
- For uncharged particles, $-p_t \equiv E$ and $p_{\varphi} \equiv L$ are conserved; function X is given by $X = E - \omega L$; only ω spatially dependent
- Provided the asymptotics is healthy (no Melvin!) $|\omega_H| \geqslant |\omega| > 0$
- Considering only particles that can get close to the black hole leads to restrictions on angular momentum L, e.g.:
- Marginally bound particles $(E \approx m)$ with I (defining L = lm) in a certain range $I_{min} < I < I_{max}$ won't get reflected; hence $X \le f_{mb}(m)$
- Photons (m = 0) with impact parameter b (defining L = bE) in a certain range $b_{\min} < b < b_{\max}$ won't get reflected; hence $X \leqslant f_{\text{ph}}(E)$
- Function X is additive and conserved at the instant of collision:
- Bound on the total value: $X_3^C + X_4^C = X_0 = X_1^C + X_2^C \le f_{in}(E_1, E_2)$
- Since X must be positive, bound works individually: $X_{3.4}^{\mathbb{C}} \leq f_{\text{in}}(E_1, E_2)$

- Let us consider a model process in which a collision of two uncharged particles gives rise to two oppositely charged particles
- For uncharged particles, $-p_t \equiv E$ and $p_{\varphi} \equiv L$ are conserved; function X is given by $X = E - \omega L$; only ω spatially dependent
- Provided the asymptotics is healthy (no Melvin!) $|\omega_H| \geqslant |\omega| > 0$
- Considering only particles that can get close to the black hole leads to restrictions on angular momentum L, e.g.:
- Marginally bound particles $(E \approx m)$ with I (defining L = lm) in a certain range $I_{min} < I < I_{max}$ won't get reflected; hence $X \le f_{mb}(m)$
- Photons (m = 0) with impact parameter b (defining L = bE) in a certain range $b_{min} < b < b_{max}$ won't get reflected; hence $X \leqslant f_{ph}(E)$
- Function X is additive and conserved at the instant of collision:
- Bound on the total value: $X_3^C + X_4^C = X_0 = X_1^C + X_2^C \leqslant f_{in}(E_1, E_2)$
- Since X must be positive, bound works individually: $X_{3.4}^{C} \leqslant f_{in}(E_1, E_2)$

- Let us consider a model process in which a collision of two uncharged particles gives rise to two oppositely charged particles
- For uncharged particles, $-p_t \equiv E$ and $p_{\varphi} \equiv L$ are conserved; function X is given by $X = E - \omega L$; only ω spatially dependent
- Provided the asymptotics is healthy (no Melvin!) $|\omega_H| \geqslant |\omega| > 0$
- Considering only particles that can get close to the black hole leads to restrictions on angular momentum L, e.g.:
- Marginally bound particles $(E \approx m)$ with I (defining L = lm) in a certain range $I_{min} < I < I_{max}$ won't get reflected; hence $X \le f_{mb}(m)$
- Photons (m = 0) with impact parameter b (defining L = bE) in a certain range $b_{min} < b < b_{max}$ won't get reflected; hence $X \leqslant f_{ph}(E)$
- Function X is additive and conserved at the instant of collision:
- Bound on the total value: $X_3^C + X_4^C = X_0 = X_1^C + X_2^C \leqslant f_{in}(E_1, E_2)$
- Since X must be positive, bound works individually: $X_{3.4}^{C} \leqslant f_{in}(E_1, E_2)$

- For charged particles, $-p_t$ and p_{φ} have spatial dependence, whereas $-\Pi_t = -p_t - qA_{\varphi} = E$ and $\Pi_{\varphi} = p_{\varphi} + qA_{\varphi} = L$ are conserved
- Spatial dependence of X gets a contribution proportional to q: $X = X_{\mathsf{C}} + \Delta X = X_{\mathsf{C}} - \Delta \omega p_{\omega}^{\mathsf{C}} - q \xi$
- For realistic particles, $|q| \gg m$ in geometric units (an electron has $q \approx -2 \cdot 10^{21} m$)
- ullet Close to the black hole $\xi \sim rac{Q}{M}\left(1-rac{r}{rc}
 ight)$
- N.B. For uncharged initial particles we have bounds on $X_{\mathbb{C}}$ (and $p_{in}^{\mathbb{C}}$)
- If we assume $|Q| \ll M$, but $|Qq| \gg Mm$, the ξ term will dominate
- One of the produced particles is hopelessly captured, the other one
- Didn't assume extremality anywhere, generic conclusion
- Limit of infinitesimal coordinate distance from the horizon not

- For charged particles, $-p_t$ and p_{φ} have spatial dependence, whereas $-\Pi_t = -p_t - qA_{\varphi} = E$ and $\Pi_{\varphi} = p_{\varphi} + qA_{\varphi} = L$ are conserved
- Spatial dependence of X gets a contribution proportional to q: $X = X_{C} + \Delta X = X_{C} - \Delta \omega p_{\omega}^{C} - q\xi$
- For realistic particles, $|q| \gg m$ in geometric units (an electron has $q \approx -2 \cdot 10^{21} m$)
- ullet Close to the black hole $\xi \sim rac{Q}{M}\left(1-rac{r}{rc}
 ight)$
- N.B. For uncharged initial particles we have bounds on $X_{\mathbb{C}}$ (and $p_{in}^{\mathbb{C}}$)
- If we assume $|Q| \ll M$, but $|Qq| \gg Mm$, the ξ term will dominate
- One of the produced particles is hopelessly captured, the other one
- Didn't assume extremality anywhere, generic conclusion
- Limit of infinitesimal coordinate distance from the horizon not

- For charged particles, $-p_t$ and p_{φ} have spatial dependence, whereas $-\Pi_t = -p_t - qA_{\varphi} = E$ and $\Pi_{\varphi} = p_{\varphi} + qA_{\varphi} = L$ are conserved
- Spatial dependence of X gets a contribution proportional to q: $X = X_{\mathsf{C}} + \Delta X = X_{\mathsf{C}} - \Delta \omega p_{\omega}^{\mathsf{C}} - q \xi$
- For realistic particles, $|q| \gg m$ in geometric units (an electron has $q \approx -2 \cdot 10^{21} m$)
- ullet Close to the black hole $\xi \sim rac{Q}{M}\left(1-rac{r}{r_{
 m C}}
 ight)$
- N.B. For uncharged initial particles we have bounds on $X_{\rm C}$ (and $p_{\alpha}^{\rm C}$)
- If we assume $|Q| \ll M$, but $|Qq| \gg Mm$, the ξ term will dominate and force a turning point just inside/outside the point of inception
- One of the produced particles is hopelessly captured, the other one
- Didn't assume extremality anywhere, generic conclusion
- Limit of infinitesimal coordinate distance from the horizon not

- For charged particles, $-p_t$ and p_{φ} have spatial dependence, whereas $-\Pi_t = -p_t - qA_{\varphi} = E$ and $\Pi_{\varphi} = p_{\varphi} + qA_{\varphi} = L$ are conserved
- Spatial dependence of X gets a contribution proportional to q: $X = X_{\mathsf{C}} + \Delta X = X_{\mathsf{C}} - \Delta \omega p_{\omega}^{\mathsf{C}} - q\xi$
- For realistic particles, $|q| \gg m$ in geometric units (an electron has $q \approx -2 \cdot 10^{21} m$)
- ullet Close to the black hole $\xi \sim rac{Q}{M}\left(1-rac{r}{r_{
 m C}}
 ight)$
- N.B. For uncharged initial particles we have bounds on X_{C} (and p_{o}^{C})
- If we assume $|Q| \ll M$, but $|Qq| \gg Mm$, the ξ term will dominate and force a turning point just inside/outside the point of inception
- One of the produced particles is hopelessly captured, the other one
- Didn't assume extremality anywhere, generic conclusion
- Limit of infinitesimal coordinate distance from the horizon not

- For charged particles, $-p_t$ and p_{φ} have spatial dependence, whereas $-\Pi_t = -p_t - qA_{\varphi} = E$ and $\Pi_{\varphi} = p_{\varphi} + qA_{\varphi} = L$ are conserved
- Spatial dependence of X gets a contribution proportional to q: $X = X_{C} + \Delta X = X_{C} - \Delta \omega p_{\omega}^{C} - q\xi$
- For realistic particles, $|q| \gg m$ in geometric units (an electron has $q \approx -2 \cdot 10^{21} m$)
- ullet Close to the black hole $\xi \sim rac{Q}{M}\left(1-rac{r}{r_{
 m C}}
 ight)$
- N.B. For uncharged initial particles we have bounds on $X_{\mathbb{C}}$ (and $p_{\omega}^{\mathbb{C}}$)
- If we assume $|Q| \ll M$, but $|Qq| \gg Mm$, the ξ term will dominate and force a turning point just inside/outside the point of inception
- One of the produced particles is hopelessly captured, the other one
- Didn't assume extremality anywhere, generic conclusion
- Limit of infinitesimal coordinate distance from the horizon not

- For charged particles, $-p_t$ and p_{φ} have spatial dependence, whereas $-\Pi_t = -p_t - qA_{\varphi} = E$ and $\Pi_{\varphi} = p_{\varphi} + qA_{\varphi} = L$ are conserved
- Spatial dependence of X gets a contribution proportional to q: $X = X_{\mathsf{C}} + \Delta X = X_{\mathsf{C}} - \Delta \omega p_{\omega}^{\mathsf{C}} - q \xi$
- For realistic particles, $|q| \gg m$ in geometric units (an electron has $q \approx -2 \cdot 10^{21} m$)
- Close to the black hole $\xi \sim \frac{Q}{M} \left(1 \frac{r}{r_{C}}\right)$
- N.B. For uncharged initial particles we have bounds on $X_{\rm C}$ (and $p_{\alpha}^{\rm C}$)
- If we assume $|Q| \ll M$, but $|Qq| \gg Mm$, the ξ term will dominate and force a turning point just inside/outside the point of inception
- One of the produced particles is hopelessly captured, the other one guaranteed to escape (and extract energy)
- Didn't assume extremality anywhere, generic conclusion
- Limit of infinitesimal coordinate distance from the horizon not suitable for this kind of process (but fine in the uncharged case!)

A more detailed look

- Unless unreasonably close to the horizon, production of oppositely charged particles will extract energy. But how much?
- Classical works parametrised the outcome of an event using relative three-velocity, Lorentz factor and the scattering angle
- \bullet An alternative parametrisation using function X avoids the three-velocity: O. B. Zaslavskii, PRD 108, 084022 (2023)
- Can be generalised to the electrovacuum case
- There is a range for $-p_t$, so corresponding range for E_3 is centered (roughly) around $-q_3A_t$; a large value assuming $|Qq|\gg Mm$
- $E_{\rm cm}$ controls width of the range: $E_3^{\rm max} E_3^{\rm min} \approx \sqrt{g_{tt}} E_{\rm cm}$
- For the BSW effect (in the extremal case) $E_{cm}^2 \sim (r_{\rm C} r_{\rm H})^{-1}$
- In the subextremal case, E_{cm} is bounded
- In both cases the width is negligible compared to the mean!
- N.B. Test particle approximation holds because of scale separation • N.B. No exotic particles in subextremal case due to $m_3 + m_4 < E_{cm}$

A more detailed look

- Unless unreasonably close to the horizon, production of oppositely charged particles will extract energy. But how much?
- Classical works parametrised the outcome of an event using relative three-velocity, Lorentz factor and the scattering angle
- \bullet An alternative parametrisation using function X avoids the three-velocity: O. B. Zaslavskii, PRD 108, 084022 (2023)
- Can be generalised to the electrovacuum case
- There is a range for $-p_t$, so corresponding range for E_3 is centered (roughly) around $-q_3A_t$; a large value assuming $|Qq|\gg Mm$
- $E_{\rm cm}$ controls width of the range: $E_3^{\rm max} E_3^{\rm min} \approx \sqrt{g_{tt}} E_{\rm cm}$
- For the BSW effect (in the extremal case) $E_{\rm cm}^2 \sim (r_{\rm C} r_{\rm H})^{-1}$
- In the subextremal case, E_{cm} is bounded
- In both cases the width is negligible compared to the mean!
- N.B. Test particle approximation holds because of scale separation $M \gg |Q| \gg |q| \gg m$; electromagnetic back-reaction is the problem!
- N.B. No exotic particles in subextremal case due to $m_3 + m_4 < E_{cm}$ Filip Hejda (CENTRA/CEICO)

extremal Kerr-Newman $Q=0.5\cdot 10^{-7}M$, $q_3=2\cdot 10^{21}m_3$

Conclusions

- The simple model of pair creation close to an electrovacuum black holes shows that it can lead to ejection of highly energetic particles
- Key ingredients are the constraints on the momentum of the centre-of-mass frame, can also work for other (quantum) models
- The general argument holds regardless of extremality; previously
- Thus, the BSW effect does not seem to be an important ingredient,
- Conventional wisdom is that black holes should be largely neutral due
- Stay tuned for a more detailed treatment of the subextremal case

This work was supported by the European Union and the Czech

Conclusions

- The simple model of pair creation close to an electrovacuum black holes shows that it can lead to ejection of highly energetic particles
- Key ingredients are the constraints on the momentum of the centre-of-mass frame, can also work for other (quantum) models
- The general argument holds regardless of extremality; previously studied $r_{\rm C} \rightarrow r_{\rm H}$ limit gives non-generic results for this model
- Thus, the BSW effect does not seem to be an important ingredient. which is great w.r.t. the BSW effect haters
- Conventional wisdom is that black holes should be largely neutral due
- Stay tuned for a more detailed treatment of the subextremal case

This work was supported by the European Union and the Czech

Conclusions

- The simple model of pair creation close to an electrovacuum black holes shows that it can lead to ejection of highly energetic particles
- Key ingredients are the constraints on the momentum of the centre-of-mass frame, can also work for other (quantum) models
- The general argument holds regardless of extremality; previously studied $r_{\rm C} \rightarrow r_{\rm H}$ limit gives non-generic results for this model
- Thus, the BSW effect does not seem to be an important ingredient. which is great w.r.t. the BSW effect haters
- Conventional wisdom is that black holes should be largely neutral due to discharge channels; the point is that pair creation is one of them!
- Stay tuned for a more detailed treatment of the subextremal case

This work was supported by the European Union and the Czech

Conclusions/Thanks for your attention

- The simple model of pair creation close to an electrovacuum black holes shows that it can lead to ejection of highly energetic particles
- Key ingredients are the constraints on the momentum of the centre-of-mass frame, can also work for other (quantum) models
- The general argument holds regardless of extremality; previously studied $r_{\rm C} \rightarrow r_{\rm H}$ limit gives non-generic results for this model
- Thus, the BSW effect does not seem to be an important ingredient. which is great w.r.t. the BSW effect haters
- Conventional wisdom is that black holes should be largely neutral due to discharge channels; the point is that pair creation is one of them!
- Stay tuned for a more detailed treatment of the subextremal case Acknowledgement:
 - This work was supported by the European Union and the Czech Ministry of Education, Youth and Sports (Project: MSCA Fellowships CZ FZU II - CZ.02.01.01/00/22_010/0008124)