AresGW: Unveiling New Gravitational Wave
Events with Machine Learning
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Different Representations of Gravitational Waves

Livingston
44— Strain time series
GW strain data as a function of time
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Different Representations of Gravitational Waves

Livingston

44— Strain time series
GW strain data as a function of time
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44— Matched-filter SNR time series
This shows how well a template
waveform matches the data over time

0.46 0.48 050 052 054 0.56 046 048 050 052 054 0.56 046 048 050 052 054  0.56
Time [s] Time [s] Time [s]

Alexandra Eleni Koloniari



Different Representations of Gravitational Waves

Livingston
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This shows how well a template
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Matched Filtering

It iIs a signhal processing technique that compares a set of template waveforms to
noisy data to detect signals with known morphologies.

1. Fourier transform the data s(f) and template R /Comjﬂ@X-cory’ugam[ tzmjo[aw

2. Compute the quantity:

FO5(f) h*(f)
h) =4°R
(S ‘ ) [() S ( f ) 4—]:- noise power SJOQCU’CI[ cﬁmsity

3. Then the optimal SNR is:

SNR,,, = /[
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1. Optimal for known signals in Gaussian noise

2. Physically interpretable since it relies on cheform

Strengths of Matched Filtering
templates

3. Well-established
-> Decades of development of GW template banks.
-> Multiple detection pipelines (PyCBC, MBTA, GstLAL, || WW W“W

|AS etc))
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Limitations of Matched Filtering

. Template dependence
-> Limited to signals similar to those covered by the waveform bank
2. Assumes Gaussian noise

-> Real detector noise is non-Gaussian and non-stationary (e.g., glitches),
which reduces its effectiveness.
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Limitations of Matched Filtering

Template dependence
-> Limited to signals similar to those covered by the waveform bank
2. Assumes Gaussian noise

-> Real detector noise is non-Gaussian and non-stationary (e.g., glitches),

which reduces its effectiveness.
3. Computationally expensive®

-> Comparing data against millions of templates is slow and resource-

intensive, especially for long-duration or high-mass-ratio signals.
3. Limited by per-detector SNR thresholds®

-> Matched filtering often applies ﬁxecf SNR thresholds in each detectoy
separately (e.g. =5.5), before coincidence checks.
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So is there anything else we can try?

NOT YET LOST

NEURAL NETWIIRKS
i

n“ ._

NElllH\l NETWOR KS
E\IEIIYWHEIIE

¢,~

S LHOPEIS

Alexandra Eleni Koloniari



Neural Networks

They are amﬁcia[ im@[ﬁ’gence (Al) models inspired by Eiofogica[ neurons and their
connections that learn patterns from data to make predictions or decisions.
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Strengths of Neural Networks

. NNs sometimes can detect signals outside the training template space
2. Can recognize non-Gaussian noise with proper training
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Strengths of Neural Networks

. NNs sometimes can detect signals outside the training template space
2. Can recognize non-Gaussian noise with proper training
3. Real-time detection speed &

-> Once trained, NNs are orders of magnitude faster than matched filtering

4. Adaptable to multi-detector data &
-> NNs can detect GWs by jointly analyzing multi-detector data without
requiring per-detector thresholds or coincidence tests.

->  Can detect signals that are consistently weak in all detectors but still
> Significant as a network SNR.
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Limitations of Neural Networks

1. Limited interpretability - it's harder to understand why they make a detection.
2. Training data dependency

-> Require large, diverse, and high-quality training sets (Poor training = poor
}oegcormance)

3. require retraining for new detector data
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A little bit of history...

PHYSICAL REVIEW D

First machine learning gravitational-wave search mock data challenge

published 27 January 2023

Marlin B. Schifer ,1’2 Ondrej Zelenka ,3 “ Alexander H. Nitz ,1’2 He Wang ,5 Shichao Wu,l’2 Zong-Kuan Guo ,5

Zhoujian Cao 0 Zhixiang Ren . Paraskevi Nousi®,” Nikolaos Stergioulas ;) Panagiotis Iosif 109

Alexandra E. Koloniari ,9 Anastasios Tefas,8 Nikolaos Passalis,8 Francesco Salemi ,11’12 Gabriele Vedovato®,
Sergey Klimenko,'* Tanmaya Mishra®,'* Bernd Briigmann®,”* Elena Cuoco®,"”'*!" E. A. Huerta®,'>"
Chris Messenger,20 and Frank Ohme®'~

13
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Test Datasets

There were 4 datasets:

e 3 contained with different PSD variations,
* 1 contained cleaned cf GWTC-2 events,
 |n all datasets, contained injections generated using the

IMRPhenomXPHM waveform model.

02 [ 1 Dataset2 & 3 & 4

All files Included 2 Paametor  Unifom deubaton

Coalescence phase o, € (0,2m)

g rOUpS, . H 17 and Polarization v € (0,27)

Inclination cost € (—1,1)

“L1 ”, representlng Declination sinf € (—1,1)
Right ascension @ € (—m,m)

d ata frO m the 2 Chirp-Distance d2 € (1307, 350°
L I G O d eteCtO I'S. TABLE I. A summary of the distributions shared between all

datasets from which parameters are drawn.




Results

Dataset 1 Dataset 2
A MFCNN D: 7I l;JmJena
~—~ B:PyCBC & —— E: Virgo-AUTh_>
= (C: CNN-Coinc - F:cWB
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FIG. 2. The sensitive distances of all submissions and all four datasets as functions of the FAR. Submissions that made use of
a machine learning algorithm at their core are shown with solid lines, others with dashed lines. The FAR was calculated on a
background set that does not contain any injections.

-> Represents the
effective range within
which a GW detection
algorithm can detect
sources at a given
FAR.

-> Accounts for both

detection zﬁciency and

source distribution.



Can we reach traditional algorithms?

PHYSICAL REVIEW D

Deep residual networks for gravitational wave detection

published 11 July 2023

Paraskevi Nousi ,1 Alexandra E. Koloniari,2 Nikolaos Passalis,1 Panagiotis Iosif ,2
Nikolaos Stergioulas ,2 and Anastasios Tefas'
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AresGW model 1

AresGW model 1 is a machine learning GW detection algorithm for BBHSs.

e 27 residual blocks 1.3M learnable
_— >

e 54 |layers In total parameters

2 epochs 2 epochs 4 epochs

Innovations

 Deep Adaptive Input Normalization (DAIN)

« Dynamic dataset augmentation

SNR real injections

e Curriculum L SNR empirica
_ ——P» SNR schedule . ..
learning

Alexandra Eleni Koloniari
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« [raining Dataset Duration:
* Noise:

« Waveform Model:

e Mass Range:

Training Dataset

12 days
Real data-quality noise of O3a from both LIGO detectors

IMRPhenomXPHM
TMy <my, <50M,

Alexandra Eleni Koloniari 14



« [raining Dataset Duration:

e Noise:
e Waveform Model:
e Mass Range:

fjfecn’ve T raining ‘Range:
e Mchirp effective range:
* M <10M,, p=0.03
/A >40M,, p =0.02

chirp —

chirp =

Training Dataset

12 days
Real data-quality noise of O3a from both LIGO detectors

IMRPhenomXPHM
TMy <my, <50M,

chirp — < 4OM
%5 % CI l I
' 10 20 30 40 -
M

10M,, < M
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Results

SLL?jOOlSS A

Variance of different test datasets
f ﬁ( standard ?yCCBC in this set up

—— ResNet54
---- PyCBC
---- cWB
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AresGW model 1: https://github.com/vivinousi/gw-detection-deep-learning
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https://github.com/vivinousi/gw-detection-deep-learning

Results
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How do sensitivity metrics fluctuate due to
dataset variability?

Robustness of Sensitivity Evaluations for Gravitational Wave Detection Algorithms

Alexandra E. Koloniari,! Lazaros Lazaridis,! Christos Paschalidis,! and Nikolaos Stergioulas®

! Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
(Dated: August 7, 2025)

Alexandra Eleni Koloniari
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One-month Test Datasets

Reference Test Dataset

Different

background
Different Injections

Same background
Different Injections
Different background

Same Injections

Notes:
*There are 28 test setsintotal: 9 + 9 + 9 +
*There are still from the AresGW, GWTC-2.1, IAS and OGC catalogs

present in the data!

Test datasets: https://gitlab.com/Alexandrai12o/aresgw-variance

Alexandra Eleni Koloniari 17
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Results

under single one-month evaluations.
when using a single one-month evaluation.
, but this FAR is too high for credible

detections.
Including real (and possibly other metrics).
Robust evaluation requires:
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The Critical Test: fPeqcormance on Real Data

MACHINE
L EARNING

Science and Technology

PAPER

New gravitational wave discoveries enabled by machine learning

Alexandra E Koloniari“* ", Evdokia C Koursoumpa'(", Paraskevi Nousi’ ‘"', Paraskevas Lampropoulos'
Nikolaos Passalis’ ("', Anastasios Tefas' (' and Nikolaos Stergioulas'

)

! Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

> Swiss Data Science Center, ETH, Ziirich, Switzerland

9 Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
* Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

* Author to whom any correspondence should be addressed.

E-mail: akolonia@auth.gr (Dated: January 28, 2025)
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AresGW model 2: New Enhancements

« Training Dataset Duration: 35 days for model 2 compared to 12 days for model 1

» Double-precision floating Only * 350 Hz low-pass filtgr in both
point format (FPe4) on only (on 03) training and data analysis
the final softmax layer data
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Data Analysis Methods

» Glitch removal with Gravity Spy
(Zevin et al. 2017)

e Hierarchical Classification of
triggers

 Ranking Statistic Optimization —

Alexandra Eleni Koloniari
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O3 data
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Data Analysis Methods

» Glitch removal with Gravity Spy
(Zevin et al. 2017)

e Hierarchical Classification of
triggers

 Ranking Statistic Optimization —
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O3 data
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Hierarchical Classification of Triggers

Default Low-Pass
- Selective Noise e Reduction of false alarms
el Rejection by 61%
] e Selective Passband —®  Reduction of false alarms
by 90%

(500 Hz)
[Rs"]

nois
background (ll)

15 20 25 30 35 40 25 30 35 40 45 50
Time (s) +1.2510105e9 Time (s) +1.2488344e9




Ranking Statistic Optimization

The light blue time series represents the
Rs with the shifted start time of an event,
while the pink time series depicts a
representative noise trigger
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Ranking Statistic Optimization

The light blue time series represents the Histograms of the <Rs> for the
Rs with the shifted start time of an event, foreground events (light blue) and
while the pink time series depicts a background triggers (pink)
representative noise trigger
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Background Statistics (FAR)

81 days of data-quality - . 3 Different -~ Hierarchical
O3a noise Glitch removal Time Shifts Classification of Triggers

——— Default Low-Pass
—— Selective Noise Rejection
—— Selective Passband
A AresGW new candidate events

Selective Passband

background triggers (6.7 months)
—— background triggers (10 years)
fit
—— 03a+03b noise triggers
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New Candidate Events (l)

« Consistency tests

A/\‘

Arrival
time < 10 ms

 PE with Bayesian inference library
(Bilby-Ashton et al. 2019)

Q | |

£ ! |

“® | i

o
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o &
= ¥
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0.72:.?
Q.A’ Qb Qﬁ
q
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New Candidate Events (ll)

(1/yr)

GW190511-125545
GW190614_.134749
GW190607_083827
GW190904-104631

GW190523-085933
GW200208-211609
GW190705-164632
GW190426-082124

12416 14563 77
1244555287.93
1243931925.99
1251629209.01
1242637191.44
1265231787.68
1246380410.88
1240302101.93

Alexandra Eleni Koloniari

Selective Passband
Selective Passband
0.48 | Selective Noise Rejection

Selective Passband

Selective Noise Rejection

Selective Passband

Default Low-Pass™
Selective Passband
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Population properties of new candidate events

1 GWTC/OGC/IAS events
1 AresGW new events

—== Mean (AresGW): 24.30 M OUF d|Str|bUt|On a|lgnS W|th that
——- Mean (GWTC/OGC/IAS): 29.13 M, —
from other catalogs
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Population properties of new candidate events

1 GWTC/OGC/IAS events
1 AresGW new events

—== Mean (AresGW): 24.30 M Our d|Str|bUt|On a|lgnS W|th that
~—- Mean (GWTC/OGC/IAS): 29.13 Mo —
from other catalogs

Training Range

GWTC
OGC
IAS
AresGW

Our new events tend to exhibit higher
luminosity distances compared to the

majority of the previously published

confirmed events 0 2000 4000 33(2(&4 lDés)ooo 10000 12000
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Population properties of new candidate events

1 GWTC/OGC/IAS events
1 AresGW new events

—== Mean (AresGW): 24.30 M, Our d|Str|bUt|On a|lgnS W|th that
——- Mean (GWTC/OGC/IAS): 29.13 Mo —
from other catalogs

Training Range

GWTC
OGC
IAS
AresGW

Our new events tend to exhibit higher
luminosity distances compared to the

majority of the previously published

confirmed events 0 2000 4000 33(2(&4 lDés)ooo 10000 12000
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Known Events

43 published gravitational wave events (GWTC / OGC / |AS) within our qﬁ(ecﬁve training

mnge:
AresGW model 2:
34/43 were confirmed with Pastro_AresGw > 0.5 Pastro IAS = 0.63, 0.56
9/43 candidate events were reported with —» Pastro GWTC = 0.54
Pastro_AresGW < 0.5 Dastro OGC = 0.5

Alexandra Eleni Koloniari 28



Known Events

43 published gravitational wave events (GWTC / OGC / |AS) within our qﬁ(ecﬁve training

mnge:
AresGW model 2:
34/43 were confirmed with Pastro_AresGw > 0.5 Pastro IAS = 0.63, 0.56
9/43 candidate events were reported with —» Pastro GWTC = 0.54
Pastro_AresGW < 0.5 Dastro OGC = 0.5

55 published gravitational wave events (GWTC / OGC / IAS) outside of our effective

tmining range:

AresGW model 2:
10/55 were confirmed with pastro_Aresgw > 0.5

Alexandra Eleni Koloniari 28



AresGW model 2:

e Detected 34/43 events within
its effective training range

e Detected 10/55 events outside
of its effective training range

Frequency [Hz] Frequency [Hz] Frequency [Hz]

Frequency [Hz]

Conclusions

Jofots @C all 8 new events:

GW190511 125545
Q =10.93, p = 0117

0.700 0.725 0.750

GPS Time [s]

GW 190607 083827

@ = 10.64, p = 0.103

GW 190523085933
Q=1242,p=0.113

0.300 0.325 0.350 0.375 0.400 0.425

GPS Time [s]

GW190705.164632
@ =9.01, p=0.105

0.800 0.825 0.850 0.875

GPS Time [s]

0.775 0.800

+1.241614563 x 10°

6.000

0.450 0.475

+1.242637191 x 10°

0.900 0.925
+1.24638041 x 10"

Frequency [Hz] Frequency [Hz] Frequency [Hz]

Frequency [Hz]

GW 190614 134749
Q@ =10.7, p=0.147

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975

GW190904 104631

@ =6.28, p = 0.064

8.875 8.900 8.925

GW 200208 211609
Q=7.74,p=0.049

0.600 0.625 0.650 675 0.700 0.725

GW 190426 082124
Q@ = 10.73, p = 0.159

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975

+1.244555287 x 10"

GPS Time [s]

8.950 8.975 9.000 9.025 9.050

GPS Time [ e

+1.265231787 x 10"

GPS Time [s]

/

+1.240302101 x 10°

GPS Time [
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Future Directions &

«Analyze O1, O2 and O4 data (with and e Build shared datasets and metrics for fair
without retraining) comparisons

» Try ditferent combination of detectors ,Combine matched filtering and ML for
(single, double, and triple detector setups)  hybrid pipelines

«Extend AresGW for the offline detection

of BBH mergers in other mass ranges,

BNS mergers etc.
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ANYQUESTIONS?
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Sensitive distance

The formula we use to estimate the sensitive volume V(F) of a search algorithm is:

where Mc; is the chirp mass of the i-th found injection with FAR F and dmax, Mcmax are the
maximum injection distance and chirp mass, respectively, from the set of signals injected
into the data.

Alexandra Eleni Koloniari



Performance Evaluation on Datasets without
Contamination by Astrophysical Signals

Datasets with identical clean noise and varying injections:

# | Injection N S (Mpc)
1{2514409456 1590.60
12019 1600.20
10209 1572.03
9801 1587.90
6291 1586.44
095 1600.90
291 1598.34
93 1587.06
32 1587.90
9 1587.50

3471+27 | 1589.9+6.1
o (std. dev.) | €[25.9,68.7] | € [5.9,15.5]
€ [0/7%,2.0%] | € [0.4%, 1.0%)

2
3
4
)
6
7
8
9
0

After removing real GW events, After removing real GW events,
Increased by Increased by only

Alexandra Eleni Koloniari



Popular Neural Network Types

weight layer

X
identity

What it is: A NN designed specifically to = What it is: A special kind of CNN that
process grid-like data, such as images. adds shortcut connections (also called
residual connections).

Key idea: Instead of connecting every = Key idea: ResNets use skip connections
input pixel to every neuron, CNNs use & (residual blocks) to avoid vanishing

convolutional layers that scan small | gradients and enable training of very deep
regions (filters/kernels) of the image. networks.

Alexandra Eleni Koloniari



AresGW Architecture (ResNet 54)

f1(x) f5(x)
— p
s ok o 'k
T (-
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Training Loss and Accuracy

Training loss & acc

Accuracy

85
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Astrophysical Probability (pastro)

dB
d(Rs) FUR))

dF Pastro = 5 ((R.)) + F((RS)

((Rs)) = W

b((Rs)) =

——— Default Low Pass
—— Selective Noise Rejection

Default Low Pass —— Selective Passband
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—— Selective Noise Rejection : ® AresGW
—— Selective Passband % (AresGW New Candidate Events)
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Parameter Estimation

Event Name Xef f SNR|SNR| SNR p
(Mo) (M@) (M@) (MPC) (H1) | (L1) | (network)

+9.45 +0.25 +16.2 +11.6
GW190511.125545 | 28.957 222 [0.727 %2 | 40. 7_10 < |28. 2_11 ;
GW190614.134749 [ 25.97F 529 [0.7070-21
GW190607_083827 | 30.4877-2% |0.7870-75 | 40. 5t;26° 31 ojg !

GW190904-104631 | 21.2475°70 10.64705% 131.37 %% | 19.7770
+10.24 +0.45 +19.3 +14.6

GW190523.085933 | 23.821-%2410.497 55 |41.77 0% 19.4_10.5

GW200208211609 | 18.83759% 10.6970-2°

GW190705-164632 | 27. 21+'g 54 |0.5270:35 |44. 7+§§ 2 123. o+11 Y

GW190426.082124 | 17.9375 15 10.4570-02|31.5722-2| 13. sfgg
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Even though AresGW was not trained on
Virgo data, it generalizes well, when the
Virgo detector is used Iin place of
Livingston or Hanford:

Performance of AresGW model 2 in detecting
BBH events in L+V or H+V data /1 O1 and O2 data

<Rs> value:

Even though AresGW was not trained on
O1 and O2 data, it identifies 6/8 events In
its effective training range with its greater

R
(Mo) | (Mo) | (Mo) (Mo) | (Mo) (
Tl

GW191216_213338
GW190630-185205
GW200112_155838
GW190708-232457

GW190620.030421
GW200302_015811
GW190925_232845
GW190910-112807

GW170104
GW170729 |GWTC > 16.0

GW170809 |GWTC > 16.0

GW170814
GW170823
GW150914
GW170818
GW151012
GW151226
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