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Matched Filtering
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It is a signal processing technique that compares a set of template waveforms to 
noisy data to detect signals with known morphologies.
Steps: 

1. Fourier transform the data (f) and template (f)

2.   Compute the quantity:





3.  Then the optimal SNR is:





s̃ h̃

(s |h) = 4 ℜ∫
+∞

0

s̃( f ) h̃*( f )
Sn( f )

df

SNRopt = h |h

complex-conjugated templat

noise power spectral densit



Strengths of Matched Filtering
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1.  Optimal for known signals in Gaussian noise
2. Physically interpretable since it relies on waveform 
templates
3.  Well-established


 -> Decades of development of GW template banks.

 -> Multiple detection pipelines (PyCBC, MBTA, GstLAL, 
IAS etc.)



Limitations of Matched Filtering
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1. Template dependence 

-> Limited to signals similar to those covered by the waveform bank


2.  Assumes Gaussian noise


-> Real detector noise is non-Gaussian and non-stationary (e.g., glitches), 
which reduces its effectiveness.


3. Computationally expensive


-> Comparing data against millions of  templates  is slow and resource-

intensive, especially for long-duration or high-mass-ratio signals.

3. Limited by per-detector SNR thresholds


-> Matched filtering often applies fixed SNR thresholds  in each detector 
separately (e.g. ≥5.5), before coincidence checks.
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So is there anything else we can try?
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Neural Networks
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They are artificial intelligence (AI) models inspired by biological neurons and their 
connections that learn patterns from data to make predictions or decisions.


Input

Weights

Activation Function

Bias



Strengths of Neural Networks
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1. NNs sometimes can detect signals outside the training template space


2. Can recognize non-Gaussian noise with proper training
3. Real-time detection speed


-> Once trained, NNs are orders of magnitude faster than matched filtering


4. Adaptable to multi-detector data

-> Unlike matched filtering, NNs can detect GWs by jointly analyzing multi-
detector data without requiring per-detector thresholds or coincidence logic.

-> Can detect signals that are coherently weak in all detectors but still significant 
as a network.
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3. Real-time detection speed


->  Once trained, NNs are orders of magnitude faster than matched filtering


4. Adaptable to multi-detector data

-> NNs can detect GWs by jointly analyzing multi-detector data without 
requiring per-detector thresholds or coincidence tests.

->  Can detect signals that are consistently weak  in all detectors but still 
significant as a network SNR.
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Limitations of Neural Networks
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1. Limited interpretability — it's harder to understand why they make a detection.
2. Training data dependency  


-> Require large, diverse, and high-quality training sets (Poor training = poor 
performance)

3. Might require retraining for new detector data




A little bit of history…
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Test Datasets

Alexandra Eleni Koloniari 10

• 3 contained Gaussian noise with different PSD variations,  
There were 4 datasets: 

• In all datasets, the positive samples contained injections generated using the 
IMRPhenomXPHM waveform model.

• 1 contained real O3a LIGO noise cleaned of GWTC-2 events,

All files included 2 
groups, “H1” and 
“L1”, representing 
data from the 2 
LIGO detectors.



Results
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 Sensitive distance:  

- > Represen ts t he 
effective range within 
which a GW detection 
algorithm can detect 
sources at a given 
FAR. 

-> Accounts for both 

detection efficiency  and 

source distribution.

Predecessor of AresGW 
model 1 and 2



Can we reach traditional algorithms?
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AresGW model 1
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• 27 residual blocks 

• 54 layers in total
1.3M learnable 

parameters

AresGW model 1 is a machine learning GW detection algorithm for BBHs. 

• Deep Adaptive Input Normalization (DAIN)

• Dynamic dataset augmentation 

• Curriculum 
learning SNR schedule 

Ιnnovations



Training Dataset
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• Training Dataset Duration:

• Noise:

• Waveform Model:
• Mass Range:

12 days
Real data-quality noise of O3a from both LIGO detectors
IMRPhenomXPHM
7 M⊙ ≤ m1,2 ≤ 50 M⊙



Training Dataset
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95 % CI
10 M⊙ ≤ ℳchirp ≤ 40 M⊙

• Training Dataset Duration:

• Noise:

• Waveform Model:
• Mass Range:

12 days
Real data-quality noise of O3a from both LIGO detectors
IMRPhenomXPHM
7 M⊙ ≤ m1,2 ≤ 50 M⊙

•                         

Effective Training Range:

• Mchirp effective range: 

ℳchirp ≤ 10 M⊙, p = 0.03

ℳchirp ≥ 40 M⊙, p = 0.02•                         



Results
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Variance of different test datasets
AresGW model 1 surpasses 

standard PyCBC in this set up

AresGW model 1: https://github.com/vivinousi/gw-detection-deep-learning

https://github.com/vivinousi/gw-detection-deep-learning
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 How do sensitivity metrics fluctuate due to

dataset variability?
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One-month Test Datasets
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Notes:
•There are 28 test sets in total: 9 + 9 + 9 + 1 reference set 

•There are still 37 GW events from the AresGW, GWTC-2.1, IAS and OGC catalogs 
present in the data!

Reference Test Datasett

Datasets with 
identical noise and 
varying injections:

Same background

Different Injections 


Datasets with varying noise and 
identical injections:

Different background

Same Injections 

Datasets with both 
varying noise and 

injections:

Different 

background

Different Injections 


Test datasets: https://gitlab.com/Alexandra1120/aresgw-variance

https://gitlab.com/Alexandra1120/aresgw-variance


Results
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• S1/month is robust under single one-month evaluations.

• NF1/month shows high variance when using a single one-month evaluation.


• NF100/month is similarly robust with S1/month, but this FAR is too high for credible 
detections.


• Including real GW events in noise biases NF (and possibly other metrics).

• Robust evaluation requires: multiple datasets, real-event removal, uncertainty 
reporting, diverse metrics, and standardized protocols.




The Critical Test: Performance on Real Data
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 AresGW model 2: New Enhancements
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• 350 Hz low-pass filter in both 
training and data analysis

• Double-precision floating 
point format (FP64) on only 
the final softmax layer

Only 
on O3 
data

(     )

• Training Dataset Duration: 35 days for model 2 compared to 12 days for model 1



Data Analysis Methods
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• Glitch removal with Gravity Spy

(Zevin et al. 2017)

• Hierarchical Classification of 
triggers

• Ranking Statistic Optimization

Background 
Generation
O3 data

Default Low-Pass

Selective Noise Rejection

Selective Passband

Mean Rs
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Hierarchical Classification of Triggers
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Default Low-Pass

Selective Noise 
Rejection

Selective Passband

Reduction of false alarms 
by 61%

Reduction of false alarms 
by 90%



Ranking Statistic Optimization
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The light blue time series represents the 
Rs with the shifted start time of an event, 
while the pink time series depicts a 
representative noise trigger



Ranking Statistic Optimization
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The light blue time series represents the 
Rs with the shifted start time of an event, 
while the pink time series depicts a 
representative noise trigger

Histograms of the <Rs> for the 
foreground events (light blue) and 
background triggers (pink)



Background Statistics (FAR)
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81 days of data-quality 
O3a noise Glitch removal Different 


Time Shifts
Hierarchical


Classification of Triggers



New Candidate Events (I)
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• Consistency tests

Arrival 

time < 10 ms χ2 test

• PE with Bayesian inference library 
(Bilby-Ashton et al. 2019)



New Candidate Events (II)
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Cumulative astrophysical probability of 5.94!

All of our eight new GW detections were

subsequently verified by an independent parameter estimation study


(Beyond GWTC-3 - Williams 2025)



Population properties of new candidate events
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Our distribution aligns with that 
from other catalogs
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Known Events
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43 published gravitational wave events (GWTC / OGC / IAS) within our effective training 
range:

AresGW model 2:
34/43 were confirmed with pastro_AresGW > 0.5

9/43 candidate events were reported with 
pastro_AresGW < 0.5

pastro_IAS    = 0.63, 0.56

pastro_GWTC = 0.54

pastro_OGC   = 0.5



Known Events

Alexandra Eleni Koloniari 28

43 published gravitational wave events (GWTC / OGC / IAS) within our effective training 
range:

AresGW model 2:
34/43 were confirmed with pastro_AresGW > 0.5

9/43 candidate events were reported with 
pastro_AresGW < 0.5

55 published gravitational wave events (GWTC / OGC / IAS) outside of our effective 
training range:

AresGW model 2:
10/55 were confirmed with pastro_AresGW > 0.5

pastro_IAS    = 0.63, 0.56

pastro_GWTC = 0.54

pastro_OGC   = 0.5



Conclusions
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AresGW model 2:
Time series examples for 2 

new candidate events:

•Detected  8  new  gravitational 
wave events!

•Detected 34/43 events within 
its effective training range


•Detected 10/55 events outside 
of its effective training range

Qp plots of all 8 new events:



Future Directions 🔮
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For AresGW:

•Analyze O1, O2 and O4 data (with and 
without retraining)


•Try different combination of detectors 
(single, double, and triple detector setups)

•Extend AresGW for the offline detection 
of BBH mergers in other mass ranges, 
BNS mergers etc.

Broader Outlook for GW 
Detection with ML:

•Build shared datasets  and metrics  for fair 
comparisons
•Combine matched filtering and ML for 
hybrid pipelines
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THANK YOU!



Sensitive distance
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The formula we use to estimate the sensitive volume V(F) of a search algorithm is:

where Mc,i is the chirp mass of the i-th found injection with FAR F and dmax, Mc,max are the 
maximum injection distance and chirp mass, respectively, from the set of signals injected 
into the data.



Performance Evaluation on Datasets without 
Contamination by Astrophysical Signals 
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Datasets with identical clean noise and varying injections:

After removing real GW events, 

NF1/month increased by ~19.2%!

FAR = 1/month:

After removing real GW events,

 S1/month increased by only ~1.0%.



Popular Neural Network Types
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CNN (Convolutional Neural Network)
 ResNet (Residual Network)


What it is: A NN designed specifically to 
process grid-like data, such as images.


Key idea: Instead of connecting every 
input pixel to every neuron, CNNs use 
convolutional layers that scan small 
regions (filters/kernels) of the image.


What it is: A special kind of CNN that 
adds shortcut  connections  (also called 

residual connections).

Key idea: ResNets use skip connections 
(residual blocks) to avoid vanishing 
gradients and enable training of very deep 
networks.



AresGW Architecture (ResNet 54)
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Training Loss and Accuracy
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Astrophysical Probability (pastro)
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Parameter Estimation
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Performance of AresGW model 2 in detecting 
BBH events in L+V or H+V data / O1 and O2 data
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Even though AresGW was not trained on 
Virgo data, it generalizes well, when the 
Virgo detector is used in place of 
Livingston or Hanford:

Even though AresGW was not trained on 
O1 and O2 data, it identifies 6/8 events in 
its effective training range with its greater 
<Rs> value:


