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Quasinormal modes

ringing a black hole

−→ field dynamics ⇒ the whole system is
dissipative

−→ exponential decay of gravitational waves

−→ sum of exponentially damped sinusoids
≡ quasinormal modes
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Ringdown and QNMs

Isolated vacuum black hole −→ QNM spectrum is uniquely determined by the black
hole’s mass and spin (and/or charge).

Black hole spectroscopy is a powerful tool for testing general relativity (imprints of
new physics?):

modified theories of gravity

quantum gravity effects

testing dark matter models

challenging the black hole paradigm: exotic
compact objects

In reality, black holes reside in astrophysical environments. How does this
environment influence the QNMs?
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Ringing astrophysical black holes

Most studies focus on the static and spherically symmetric case:a Schwarzschild
black hole surrounded by a (dark-)matter halo or dust shells.
(Barausse, Cardoso, and Pani, 2014; Cheung et al., 2022; Cardoso et al., 2022; Konoplya, 2021;

Pezzella et al., 2025).

Some open questions:

Certain small changes to the system lead to instabilities in the QNM
spectrum (Cheung et al., 2022).

The fundamental mode can be extracted from time-domain simulations (Berti

et al., 2022), but the role of overtones remains uncertain.

Even after a recent systematic investigation by Cardoso, Kastha, and Macedo (2024),
the physical relevance of QNM spectral instabilities remains unresolved.
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Accretion disk

This talk: Accretion disk as a natural astrophysical environment of a black hole

−→ departing from the spherical symmetry.

Figure 1: Interstellar black hole (James et al., 2015).
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Outline

1 The Schwarzschild + disk model (SBH+disk)

2 QNMs of a scalar field

3 Particular results
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Weyl metric

Gravitational field of static and axially symmetric vacuum spacetimes is described by

ds2 = −e2ν dt2 + ρ2e−2ν dφ2 + e2λ−2ν(dρ2 + dz2) , (1)

where t, ρ, φ, z are the Weyl cylindrical coordinates and ν(ρ, z), λ(ρ, z).

Vacuum (outside of sources) Einstein equations:

∇ · (∇ν) = 0

... look, Laplace equation!

(2)

λ,ρ = ρ(ν2
,ρ − ν2

,z) (3)

λ,z = 2ρν,ρν,z (4)
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Multiple sources in GR

Consider two distinct solutions, described respectively by ν1, ν2, and λ1, λ2

respectively

Their common gravitational field is given by

ν = ν1 + ν2 , (5)

λ = λ1 + λ2 + λint , (6)

where λint satisfies

λint,ρ = 2ρ(νSchw,ρνdisk,ρ − νSchw,zνdisk,z) , (7)

λint,z = 2ρ(νSchw,ρνdisk,z + νSchw,zνdisk,ρ) . (8)
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SBH+disk model

Schwarzschild black hole in Weyl coordinates

νSchw =
1

2
ln

(
R+ + R− − 2M

R+ + R− + 2M

)
, λSchw =

1

2
ln

[
(R+ + R−)2 − 4M2

4R+R−

]
, (9)

where

R± =
√
ρ2 + (|z | ∓M)2 . (10)

Add a suitable disk solution with a “reasonable” density profile and integrate λint .
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The SBH+disk model (Kotlǎŕık and Kofroň, 2022):

a family of thin disks; potential first
considered by (Vogt and Letelier, 2009)

both metric functions ν, λ found
analytically in closed form
(polynomials and square roots)

Newtonian disk density ∝
Mb2m+1ρ2n

(ρ2 + b2)m+n+3/2
, m, n ∈ N0 , (11)

where for every m, n, there are 2 free parameters:

M is the total mass of the disk,

b has dimension of length.
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Petr Kotlǎŕık Black Hole Ringdown in an Astrophysical Environment



Physical interpretation

Two simple physical interpretations:

1 ideal fluid with surface density σ and azimuthal pressure P
(set of solid hoops)

2 two identical counter-orbiting dust streams with surface
densities (σ+ = σ− ≡ σ/2) following circular geodesics

Both characteristics σ and P are encoded in the jump of the normal derivative of the
gravitational potential

σ + P =
ν,z(z = 0+)

2π
eν−λ , P =

ν,z(z = 0+)

2π
ρν,ρe

ν−λ .

For a wide range of parameters, the disk in SBH+disk model satisfies all energy
conditions.
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QNMs of a scalar field

A simpler problem: perturbations of a massless scalar field, which are governed by
the Klein-Gordon equation

�ψ = 0 . (12)

The wave equation is separable on the Schwarzschild background in the Schwarzschild
coordinates (r , θ): ρ =

√
r(r − 2M) sin θ , z = (r −M) cos θ .

In particular, the ansatz

ψ =
ψω`mz (r)

r
Y`mz (θ, φ)e−iωt , (13)

where Y`mz are the spherical harmonics, leads to the famous
Regge–Wheeler-type equation for a scalar field:

d2Ψω`mz

dr2
∗

+
[
ω2 − Veff(r)

]
Ψω`mz = 0 , (14)
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However, the presence of the (axially symmetric) disk breaks this convenient property.

Cano, Fransen, and Hertog (2020): “almost separable” systems, projection method.

Chen, Chiang, and Tsao (2022): Schwarzschild black hole perturbed by a small axially
symmetric deformation.

If ε ≡M/M � 1, the wave equation again leads to the Reggee–Wheeler form

d2Ψω`mz

dr2
∗

+
[
ω2 − Veff(r)

]
Ψω`mz = 0 , (15)

with the appropriately modified tortoise coordinate r∗, and

Veff(r) = V Sch
eff (r) + εV corr

eff (r) . (16)

Petr Kotlǎŕık Black Hole Ringdown in an Astrophysical Environment



However, the presence of the (axially symmetric) disk breaks this convenient property.

Cano, Fransen, and Hertog (2020): “almost separable” systems, projection method.

Chen, Chiang, and Tsao (2022): Schwarzschild black hole perturbed by a small axially
symmetric deformation.

If ε ≡M/M � 1, the wave equation again leads to the Reggee–Wheeler form

d2Ψω`mz

dr2
∗

+
[
ω2 − Veff(r)

]
Ψω`mz = 0 , (15)

with the appropriately modified tortoise coordinate r∗, and

Veff(r) = V Sch
eff (r) + εV corr

eff (r) . (16)
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Effective potential

The disk is described by 4 parameters: 2 positive real M, b, and a pair (m, n).

Newtonian disk density ∝
Mb2m+1ρ2n

(ρ2 + b2)m+n+3/2
(17)

Sch,ℳ=0,
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Universal behaviour?

QNM frequencies of the fundamental mode for ` = mz = 2:

XXm∈[0,6]

b∈[5M,25M]

n∈[0,5]

n

b

ℳ

m

0.479 0.48 0.481 0.482 0.483

0.096

0.0962

0.0964

0.0966

0.0968

ωR/M

-ωI

M

Newtonian disk density

∝ Mb2m+1ρ2n

(ρ2 + b2)m+n+3/2
.

Remarks:

BH immersed in spherically symmetric (dark)matter exhibits similar behavior
(Cardoso et al., 2022; Konoplya, 2021; Pezzella et al., 2025; Chakraborty, Compère, and

Machet, 2025)

a typical effect of the astrophysical environment?
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Future work:

Extend the analysis to stationary systems and to a massive scalar field −→
impact on superradiant instabilities?

Analyze gravitational QNMs and address some of the open questions −→ two
types of perturbations involved:

deformation of spacetime due to the surrounding matter
ringdown gravitational waves

Systematically compare with predictions of alternative theories of gravity: can
the astrophysical environment imitate or obscure potential signatures of
modifications to GR?
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Brief summary

QNMs of a scalar field propagating in the
SBH+disk background

disk flattens the effective potential

QNMs seem to follow a universal relation

can we disentangle environmental effects from
those induced by alternative theories of gravity?

Thank you for your
attention.

Questions?
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