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Motivation

» Aichelburg-Sex| metric describes the
gravitational field of an ultrarelativistic spinless
point particle.

» Gyraton metric represents a beam of spinning
null fluid

» Gyraton solutions are usually sourced by an
effective stress energy tensor singular on the
propagation axis

» Usually no fundamental action principle is used
 |[nfinite extension in space and time



« GOAL OF THIS TALK:

» Show that there exist exact self gravitating
gyraton solutions with no sharp boundaries and
free of curvature or mater singularities.
Moreover these solutions are PULSED

Case of gauged non linear Einstein-non-linear
Sigma model

(Exist also in the case of gauged Einstein-
Skyrme model with cosmological constant but
time constraint in this talk)



The action principle

* Einstein- gauged Skyrme model

R-2A K KA 1
I1g,U, 4] = /M dizy=g (2 + L+ 5T (G G) - FF) , (1)

4
L“ = U_ID”U - Lﬁta 3 G,u,v = [L,u:LV] )

where U(z) € SU(2), g is the metric determinant, R is the Ricci scalar, A is the cosmological constant, K and A are
experimentally fixed positive coupling constants (in the special case that ) is zero the matter action is also known as
Non-Linear-Sigma-Model), and t, = io, are the generators of the SU(2) Lie group, being ¢, the Pauli matrices. In
Eq. (1), D, denotes the covariant derivative associated to the U(1) gauge field A, that acts as

DU=V,U+AU0, O=U"[ts,U], 2)
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Matter field and Metric ansatz
e Ansatz
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where the three degrees of freedom of the SU(2) group element are

Fi(z") = gnp  Ry(zM=H®r), F") =G).

Fe

A metric Ansatz in the Kundt class that leads to a compatible equations system (as we will see below) is the following

ds? = — fdu? + e (dr2 + r2dc,o2) + 2dudv + 2Rodudyp zt = {u,v,r, ¢}, (9)

with f = f(u,r), R1 = Ri(r) and R2 = Ra(u,r). Here u and v are null coordinates; u =t — z and v = t 4+ z. The
range of the spatial coordinates {r, ¢, z} are

O0<r<oo, 0L<p<2r, —-o00<z<00.

On the other hand, for the Maxwell potential we assume

A, = (B,0,0—g). (10)

where B = B(u,r).



Generic field equations

* Eliminating the G(u) dependence for eq. of
motion by redefining:

B(u,r) = 5 Cu)(1— P(r)) ,
Ry(u,r) = G(w)V(r) ,
fu,m) = (G(u))*M(r) ,
The 3 Skyrme equations reduce to one

equation and inserting Einstein field equations

reads: A2 —psin(H)+7rR;) =0.



e Einstein field equations:
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 The maxwell equation reads
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* As nothing depends on G(u) the function can be
taken with compact support.

* The function H(r) can be immediately integrated

P_1
H(r)= arcsin(cl{r ) :

c1T? +1

Eq. 18) leads to two branches:
e a) set A=A=0
« b) solve for R in terms of H(r)
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Case N\=A=0

In this case the e.o.m. reduce to
P’ + %P’ — 4K Pef'sin?(H) =0,
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272
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eq. 25) can be integrated

Ry(r) = (2Kkp + c3) log(r) — 2Kk log(l 4+ c17P) + 5 .

suitable rescaling of r and the absence of
conical singularities leads to the condition

L8 = —2Kﬁ§|p| ?

(24)
(25)
(26)

(27)

he integration constant ¢, can be elimated by a



Avoiding conical singularity

2
X ="rm?, where m=2(Kkl|p|+1)+c3 .

Then, the induced metric ds3 on the 2-surface with constant v and v approximates to

m2
ds2 ~dX? + 4X2d<,o2 :

near the symmetry axis. To remove the conical singularity along the symmetry axis, we should impose m = 2, that
means

¢s = —2Krlp|, (29)



9rr = gt = .
(1 + cyrivl
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« Also eq. 26) can be integrated in terms of
hypergeometric functions

Vir) = —2Kﬁ3’:"22F1(1 +2Kk,2/|p|, 1+ 2/|p|; —clr|p|)
+Vir? Py Fy (2K K, 2/[p|, 1 + 2/|p|; —cr!?) .
* Regularity in r=0 forces p>2

 Now are still missing the functions P and M
however the curvature invariants do not depend
on P and M so we can check the regularity.



e The Ricci scalar takes the form

By 4Ry = AR

R=— - — (1 _I_Cl?,,p)2(1—KH.)

 As p>2 and Kk <<1 it is regular in zero and at
infinity.lts maximum lies on a tube around the
propagation axis. All other curvature invariants
are zero or powers of the Ricci scalar.



e Exact solution:

we can chose P=0 (pure gauge Maxwell field)
then eq. 24) is satisfied and M can be
integrated in this case

2c1TP

(2+p)?
— Kk 3F, ({Z/p, 2/p,2(1+ Kk)},{1+2/p,1+2/p}; —clrp) }+M0 :

M(r) :4KH,?”2{ 3 ({1 +2/p,14+2/p,2(1 + Kr)},{2(1 +1/p),2(1+ 1/p)}; —clrp)



 The components of the stress energy tensor
read

e—Ri2
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« Some components do not correspond to a null
fluid but with our regularity conditions
asymptotically the the non null fluid components
of the energy stress tensor go faster to zero
than the null fluid components



* The r-r and @-¢ are zero because of the equations of
motion

1

1
y Tup~ — 5 Ty ™ rp+2+2Kk

rp

* As asymptotically the metric can not be distinguished
from a gyraton the angular momentum per unit of
length can be calculated with standard methods (see
Podolsy, Steinbauer,Svarc; Phys. Rev. D90 (2014) 4,

044050). The total angular momentum is finite as G(u)
has compact support.
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FIG. 1: Energy density for the exact asymptotically flat self-gravitating spinning tube, in the r — ¢ plane . We have
used the following values: K =c¢;=1,p=3,k=1/5,my=0and G=1.

also the energy density has finite extension in
time and propagation axis: it describes a pulse.



Topological charge density

P 3;‘ i» (P(r) si? H(fr)) |

* |If we decide NOT to set P=0 it can be
integrated as a Heun function and M satisfies
then a linear ODE.
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