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Brane-worlds

Figure from Warped Passages, Lisa Randall

▪ The observed universe is modeled 
by a 4d hypersurface situated at 
a fixed position of an extra 
spatial dimension.

▪ The whole spacetime is five 
dimensional: there are four 
dimensions of space, out of 
which only three are spanned by 
the hypersurface and one 
dimension of time. The 
hypersurface is called a 3-brane
while the full higher 
dimensional space is called the 
bulk.                                



Brane-worlds

▪ A brane can trap particles and 
forces making it impossible for 
them to escape.

▪ However, it does interact with 
the matter and forces in the 
bulk. This happens because 
gravity naturally extends over 
all dimensions of space and 
time, and it can therefore 
influence the fields that are 
constrained on the brane.

▪ Other bulk matter fields can 
also interact with the fields 
on the brane, and the strength 
of this interaction is 
controlled by a coupling 
function that is model-
dependent. 

Figure from Warped Passages, Lisa Randall



Brane-worlds

▪ Higher-dimensional models propose alternative 

approaches towards understanding and hopefully 

improving our view on challenging issues in cosmology 

and particle physics. 

▪ We focus on a particular class of brane-worlds because 

it offers an interesting implication on the 

cosmological constant problem (cc-problem).



The cosmological constant problem

▪ The cc-problem arises from the disagreement between 
predictions from quantum field theories and 
observations regarding the value of the cosmological 
constant. 

▪ The theoretical quantum corrections to the 
cosmological constant are naturally some 120 orders of 
magnitude higher than its observed value. 

▪ Based on theory, the huge value of the cosmological 
constant would automatically imply a huge value of the 
vacuum energy, which would in turn give rise to a 
highly curved universe, a prediction that is not 
compatible with observations. 



Brane-worlds: open questions 

▪ The brane-world of N. Arkani-Hamed, S. Dimopoulos, N. 
Kaloper, R. Sundrum, A small cosmological constant from a 
large extra dimension, consisted of a flat 3-brane 
embedded in a 5d bulk filled with a massless scalar field 
and had a finite-distance singularity. 

▪ This singularity was believed to act as a reservoir of 
energy through which energy leaked from the brane to the 
bulk, allowing for a small cosmological constant to be 
observed on the brane.



Brane-worlds: open questions 

Open questions

• Is the finite-distance singularity a generic feature of 
these models?

• Under what conditions can it be avoided?

▪ Can the problem of the cosmological constant be   
resolved in the framework of these more general models?



Brane-worlds: open questions 

We generalized the model of N. Arkani-Hamed, S. Dimopoulos, N. 
Kaloper, R. Sundrum by:

• Substituting the scalar field with an analog of perfect 
fluid: EOS 𝒑 = 𝜸𝝆.

• Substituting the scalar field with a non-linear fluid: EOS 
𝒑 = 𝜸𝝆𝝀.



Setup of brane-world

• A 3-brane is embedded in a 5d bulk filled with 
a fluid with ‘pressure’ 𝒑 and ‘density’ 𝝆 that 
are functions of the fifth dimension 𝒀. The 
bulk metric is

𝒈𝟓 = 𝒂𝟐 𝒀 𝒈𝟒 + 𝒅𝒀𝟐

  where 𝒈𝟒 is the 4d flat metric. 

• The energy-momentum tensor of the fluid is
𝑻𝑨𝑩 = 𝝆 + 𝒑 𝒖𝑨𝒖𝑩 − 𝒑𝒈𝑨𝑩 

  where 𝒖𝚨 = (𝟎, 𝟎, 𝟎, 𝟎, 𝟏) and A,B=1,2,3,4,5.



Setup of brane-world

• Field equations 𝑮𝑨𝑩 = 𝜿𝟓
𝟐𝑻𝑨𝑩 become

 𝟔
𝒂′𝟐

𝒂𝟐
= 𝜿𝟓

𝟐𝝆 

 
𝒂′′

𝒂
= −

𝜿𝟓
𝟐

𝟔
𝝆 + 𝟐𝒑

• The energy-momentum conservation gives

 𝝆′+𝟒
𝒂′

𝒂
𝝆 + 𝒑 = 𝟎 



Linear bulk fluid with EOS 𝒑 = 𝜸𝝆



Linear bulk fluid with EOS 𝒑 = 𝜸𝝆

• For a linear fluid 𝒑 = 𝜸𝝆, the continuity equation gives gives:

𝜌 = 𝑐1𝑎−4(𝛾+1)

and substitution to the first field equation gives

𝑎 = 2 𝛾 + 1 ±
𝜅5

2𝑐1

6
𝑌 + 𝑐2

1/(2 𝛾+1 )

also

𝜌 = 𝑐1 2 𝛾 + 1 ±
𝜅5

2𝑐1

6
𝑌 + 𝑐2

−2



Linear bulk fluid with EOS 𝒑 = 𝜸𝝆

• It follows that there is a singularity at finite-distance

𝑌 = 𝑌0 = ±𝑐2

6

𝜅5
2𝑐1

  with 

▪ 𝛾 > −1:  𝑎 → 0, 𝜌 → ∞, 𝑌 → 𝑌0

▪ 𝛾 < −1:  𝑎 → ∞,  𝜌 → ∞, 𝑌 → 𝑌0



Linear bulk fluid with EOS 𝒑 = 𝜸𝝆

• To avoid the singularity, we can place the brane 
at the origin 𝒀 = 𝟎 and make the following 
choices:

▪ 𝛾 > −1, 𝑐2 ≥ 0,

𝑎 = 2 𝛾 + 1
𝜅5

2𝑐1

6
|𝑌| + 𝑐2

1/(2 𝛾+1 )

  and

𝜌 = 𝑐1 2 𝛾 + 1
𝜅5

2𝑐1

6
|𝑌| + 𝑐2

−2



Linear bulk fluid with EOS 𝒑 = 𝜸𝝆

▪ 𝛾 < −1,  𝑐2 ≤ 0,

𝑎 = 2 𝛾 + 1 −
𝜅5

2𝑐1

6
|𝑌| + 𝑐2

1/(2 𝛾+1 )

  and

𝜌 = 𝑐1 2 𝛾 + 1 −
𝜅5

2𝑐1

6
|𝑌| + 𝑐2

−2



Linear bulk fluid with EOS 𝒑 = 𝜸𝝆

• We impose continuity of 𝜶 and 𝝆. 

• Take into account the jump of the extrinsic curvature 𝑲𝜶𝜷 =
𝟏/𝟐(𝝏𝒈𝜶𝜷/𝝏𝒀) (𝜶, 𝜷 = 𝟏, 𝟐, 𝟑, 𝟒):

𝑲𝜶𝜷
+ − 𝑲𝜶𝜷

− = −𝜿𝟓
𝟐 𝑺𝜶𝜷 −

𝟏

𝟑
𝒈𝜶𝜷𝑺

  where 𝑺𝜶𝜷 = −𝒈𝜶𝜷𝒇(𝝆), 𝒇(𝝆) is the brane tension and 

  𝑺 = 𝒈𝜶𝜷𝑺𝜶𝜷.

• For  𝜸 < −𝟏, 𝒄𝟐 ≤ 𝟎: 𝒄𝟏
+ = 𝒄𝟏

− and 𝒄𝟐
+ = 𝒄𝟐

− (𝒄𝒊
+ is the value of 𝒄𝒊 at 

𝒀 > 𝟎)

𝒇 𝝆 =
𝟔

𝟐𝜿𝟓(𝜸 + 𝟏)

𝒄𝟏

𝒄𝟐



Linear bulk fluid with EOS 𝒑 = 𝜸𝝆

Summary:

The finite-distance singularity can be avoided by 
constructing a matching solution. However, the 
matching solution cannot at the same time satisfy the 
requirements of

▪ Energy conditions: require at least 𝛾 > −1

▪ Localizing gravity: requires −𝟐 < 𝜸 < −𝟏



Non-linear bulk fluid with EOS 𝒑 = 𝜸𝝆λ



Non-linear bulk fluid with EOS 𝒑 = 𝜸𝝆𝝀

• Inputting 𝒑 = 𝜸𝝆𝝀 in the energy conditions gives the common 
restriction 

𝜸 + 𝝆𝟏−𝝀 ≥ 𝟎

• Taking this into account while integrating the continuity 
equation we find

𝜌 = −𝛾 + 𝑐1𝑎4(𝜆−1) 1/(1−𝜆)
.

• To avoid the singularity for 

𝜆 > 1       and 𝑎4 𝜆−1 =
𝛾

𝑐1

 we take 𝛾 < 0.



Solutions for 𝝀 < 𝟏: finite-distance singularities

• Substituting 𝝆 in the first field equation we find:

න
𝑎

𝑐1 − 𝛾𝑎4(1−𝜆) 1/(2 1−𝜆 )
𝑑𝑎 = ±

𝜅5

6
න 𝑑𝑌 

Solution for 𝝀 < 𝟏:

±𝑌 + 𝑐2 =
6

2𝜅5
𝑐1

1/(2 𝜆−1 )
𝑎2 2𝐹1

1

2(1 − 𝜆)
,

1

2(1 − 𝜆)
,

1

2(1 − 𝜆)
+ 1;

𝛾

𝑐1
𝑎4(1−𝜆)



Solutions for 𝝀 < 𝟏: finite-distance singularities

where

2𝐹1 𝑎, 𝑏, 𝑐; 𝑧 =
Γ(𝑐)

Γ(𝑎)Γ(𝑏)
σ𝑛=0

∞ Γ(𝑎+𝑛)Γ(𝑏+𝑛)

Γ(𝑐+𝑛)

𝑧𝑛

𝑛!
,    𝑧 < 1,

2𝐹1 𝑎, 𝑏, 𝑐; 𝑧 =
Γ 𝑐

Γ 𝑏 Γ 𝑐−𝑏
0׬

1
𝑡𝑏−1 (1 − 𝑡)𝑐−𝑏−1(1 − 𝑡𝑧)−𝑎𝑑𝑡,

0 < 𝑅𝑒 𝑏 < 𝑅𝑒(𝑐).

Finite-distance singularity at 𝑌 → ±𝑐2 with 𝑎 → 0



Solutions for 𝝀 > 𝟏: regularity

• The integral on the LHS can be integrated directly 
for 

𝜆 =
2𝑘+1

2𝑘
, 𝑘 positive integer.

  Take 𝝀 = 3/2 the solution is 

±𝑌 + 𝑐2 =
6

𝜅5

𝑐1

2
𝑎2 − 𝛾 ln 𝑎

  then
𝑎 → 0, ρ → (−𝛾)1/(1−𝜆), p → − (−𝛾)1/(1−𝜆), as Y → ±∞

𝑎 → ∞, ρ → 0, p → 0, as Y → ±∞



Solutions for 𝝀 > 𝟏: matching solution

• A matching solution is

|𝑌| =
6

𝜅5
−

𝑐1

2
𝑎2 + 𝛾 ln 𝑎 −

𝛾

2
− 𝛾 ln

−𝛾

𝑐1

𝑎′
+ 0 − 𝑎′

− 0 =2𝑎′
+ 0 =−

𝜅5
2

3
𝑓 𝜌 0 𝑎(0)

𝑓 𝜌 0 =
6

2𝜅5𝛾



Solutions for 𝝀 > 𝟏: 𝝀 arbitrary

For all 𝝀 > 𝟏,

• The asymptotic behaviors are:

▪ 𝑎 → 0, ρ → (−𝛾)1/(1−𝜆), p → − (−𝛾)1/(1−𝜆)  as Y → ±∞

▪ 𝑎 → ∞, ρ → 0, p → 0  as Y → ±∞

• We can construct matching solutions that successfully 
localize gravity on the brane.



Scalar field realization of the non-linear bulk fluid:
An example with 𝜸 = −𝟏 and 𝝀 = 𝟐



Scalar field realization of the non-linear bulk fluid:
An example with 𝜸 = −𝟏 and 𝝀 = 𝟐

▪ We model the non-linear bulk fluid with EOS 
𝒑 = −ρ2 

with a scalar field having 

   𝜌 =
𝜙′2

2
− V(𝜙) and 𝒑 =

𝜙′2

2
+ V(𝜙)

we find 

𝝓′𝟐 = −𝟏 + 𝟐𝑽 𝝓 + 𝟏 − 𝟖𝑽 𝝓  

with −𝟏 < 𝑽 𝝓 < 𝟎.



Scalar field realization of the non-linear bulk fluid:
An example with 𝜸 = −𝟏 and 𝝀 = 𝟐

• Inputting this in the equation of motion

 𝝓′′+𝟒
𝒂′

𝒂
𝝓′ = ሶ𝑽 (𝝓) 

and using the first field equation 

𝟔
𝒂′𝟐

𝒂𝟐
= 𝜿𝟓

𝟐 𝜙′2

2
− V 𝜙

we find 

𝑽 𝝓 = −
𝟐𝒆𝟐𝒌 𝝓+𝒄 𝟏 + 𝟔𝒆𝟐𝒌 𝝓+𝒄 + 𝒆𝟒𝒌 𝝓+𝒄

𝟏 + 𝒆𝟐𝒌 𝝓+𝒄 𝟒

where 𝑘 =
2

3
𝜅5.



Scalar field realization of the non-linear bulk fluid: 
An example with 𝜸 = −𝟏 and 𝝀 = 𝟐

▪ Substituting 𝑽(𝝓) in 

 𝝓′𝟐 = −𝟏 + 𝟐𝑽 𝝓 + 𝟏 − 𝟖𝑽 𝝓  

And integrating we find

𝒆−𝒌 𝝓+𝒄 + 𝒆𝒌 𝝓+𝒄 + ln
𝒆𝒌 𝝓+𝒄 − 𝟏

𝒆𝒌 𝝓+𝒄 + 𝟏

𝟐

= ±𝟐𝐤( 𝐘 + 𝐜𝟏) 



Scalar field realization of the non-linear 
bulk fluid: An example with 𝜸 = −𝟏 and 𝝀 = 𝟐

▪ Also, we find an expression for 𝑯

𝑯 =
𝒂′

𝒂
= ±

𝒌𝒆𝒌 𝝓+𝒄

𝟏 + 𝒆𝟐𝒌 𝝓+𝒄  

and following this we find an expression for 𝒂:

𝒂 = 𝒄𝟐 |𝒆𝒌 𝝓+𝒄 − 𝒆−𝒌 𝝓+𝒄 |

valid for 

𝒂 = 𝒄𝟐

𝒆𝒌 𝝓+𝒄

𝒆𝟐𝒌 𝝓+𝒄 − 𝟏
 



Scalar field realization of the non-linear 
bulk fluid: An example with 𝜸 = −𝟏 and 𝝀 = 𝟐

▪ The possible asymptotic behaviors of 𝑌, 𝑉, 𝐻 and 𝑎 are:

𝑌 𝑽 𝑯 𝒂

𝜙 → −𝑐− ±∞ −1 ±𝑘/2 0, ∞

𝜙 → −𝑐+ ±∞ −1 ±𝑘/2 0, ∞

𝜙 → −∞ ±∞ 0 0 0, ∞

𝜙 → ∞ ±∞ 0 0 0, ∞



Conclusions

We have studied 
brane-worlds with a 
flat 3-brane in a 

5d-bulk, filled with 
fluids with EOS 

𝒑 = 𝜸𝝆𝝀

and an example of a 
scalar field 
realization

• For 𝝀 = 𝟏, the solutions are singular. A 
regular matching solution can be constructed 
but it cannot at the same time satisfy 
energy conditions and the requirement of a 
finite Planck mass on the brane.

• For 𝝀 < 𝟏, the solutions have a finite-
distance singularity. 

• For 𝝀 > 𝟏 and 𝜸 < 𝟎, the solutions are 
regular, satisfy energy conditions and 
localize gravity on the brane.

• For 𝝀=2 and 𝜸=−1, it is possible to 
describe the non-linear fluid with regular 
behavior by a scalar field with a potential.
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