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Our goal

Motivation and preliminaries General relativity

Modifying general relativity
Einstein-Gauss—-Bonnet theory
Robinson-Trautman spacetimes

WileEvetito s Why study RT spacetimes in EGB theory?

General relativity in D = 4:  the best theory of gravity we have!

General relativity in D > 4: interesting toy model

RT in D =4 GR: Weyl algebraic type Il and more special

(black holes, C-metric, gravitational waves, ...)

RT in D > 4 GR: Weyl algebraic type D
(black holes only)

Is this D = 4 versus D > 4 discrepancy due to:
the gravity theory or the geometric nature of RT class?

Study RT class in the natural D > 4 GR extension, i.e., in EGB theory!
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Our goal

Motivation and preliminaries General relativity

Modifying general relativity
Einstein-Gauss—-Bonnet theory
Robinson-Trautman spacetimes

Preliminar General Relativity

General Relativity formulated by a variational principle:

o the vacuum Einstein-Hilbert action in any dimension D

Sz/de\/:g%(R—ZA> J

@ 0S5 = 0: the equations of motion

1

Einstein’s equations: system of 2nd order non-linear PDEs
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Our goal

Motivation and preliminaries General relativity

Modifying general relativity
Einstein-Gauss—-Bonnet theory
Robinson-Trautman spacetimes

Preliminar Extensions of GR

Why to modify Einstein’s general relativity?

o cosmological issues: dark energy, dark matter

o small scales: singularities, compatibility with quantum
description

How to modify Einstein’s general relativity?

o number of dimensions

o various (exotic) matter contributions

o geometry
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Our goal

Motivation and preliminaries General relativity

Modifying general relativity
Einstein-Gauss—Bonnet theory
Robinson-Trautman spacetimes

\Zabiiiioo . EGB theory — action

@ non-trivial representative of Lovelock gravities (Lovelock 1971)

o the heterotic string theory limit for low energies e.g. (Gross and Sloan 1987)

It is introduced via the Gauss—Bonnet term in the action:
1
S = /de«/—g [k(R —2A) +vLgp
where the Lgp stands for
Lcp = R Rygep — 4R“Rey + R

where R is the Ricci scalar, and A, k and 1y are constants (y = 0 < GR).

EGB theory preserves the 2nd order field equations and is thus the
natural extension of general relativity to higher dimensions.
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Our goal

Motivation and preliminaries General relativity

Modifying general relativity
Einstein-Gauss—Bonnet theory
Robinson-Trautman spacetimes

\Z2iabiniieiiio o BGB theory — field equations

The field equations are obtained using JS = 0:

Rap — 3R ap + A &ap + 2ky Hpp = 0
where
Hap = R Ryp — 2Rgepg R + Rycge Rp™ — 2Rae Ry — £ gup Lo

with
Lcp = Regep RS — 4R 4 R™ + R?
Our goal is:

@ to explicitly derive and analyse these 2nd order equations for
the Robinson-Trautman geometric ansatz

@ to compare properties of obtained solutions in the EGB gravity
with those of D > 4 GR
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Our goal

Motivation and preliminaries General relativity

Modifying general relativity
Einstein-Gauss—-Bonnet theory
Robinson-Trautman spacetimes

Z2iabitieiiicof Geometry of null congruences

The transverse behavior of a geodesic congruence generated by a null
vector field k is characterized by optical scalars.
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Expansion: Shear: Twist:

=pakly = k(ﬂ;b)ka;b — (K, A= _k[ﬂ;b]ka;b

Robinson-Trautman geometries: spacetimes admitting
non-twisting, shear-free and expanding null geodesic congruence.
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Our goal

Motivation and preliminaries General relativity

Modifying general relativity
Einstein-Gauss—-Bonnet theory
Robinson-Trautman spacetimes

RT geometries — adapted coordinates

Twist-free condition k|, ;) = 0 < 3 null foliation with k normal

D-dim non-twisting spacetime in r, u, x? (»=2,.,0-1) coordinates:

@ u = const labels null hypersurfaces

u, T = const

0 k = 0, is a generator of a non-twisting congruence

o ris an affine parameter along such a congruence

© u = cst. Ar = cst.is D — 2-dim space gp;
The non-twisting metric g,, becomes:

ds? = Spq(r,u, x) dxPdx® +2g,, (v, u, x) dxPdu — 2dudr + gy (r, u, x) du?

Shear-free condition:

Spar =208 & gpg = exp (2/@(r, u, x) dr) hpg(u, x)
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rp-component

ru-component, etc.
Constraints on the Weyl tensor

Our results

Hesillc rr-component

For simplicity and in analogy with GR we set:
Sup(r,u,x) =0
and the RT metric, we want to study, becomes:
ds? = Quu(r,u, x)du2 —2dudr 4+ R(r,u, x)hpg(u, x)dxPdxT
The EGB field equations rr-component takes the form:
(©,+0%)[D—2+2xy(D —4)(°R+ (D - 2)(D — 3)@%*guu
— (D —-3)08"" gmnu +4(D —3)8""0 ,0,,)] =0
Two branches of solutions w.r.t. ® , + @2
0 0,+0*=0 — O~ r!.. GR-like behavior

0 ©@,+®#0 — e.g. constraint on gy,
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rp-component

ru-component, etc.
Constraints on the Weyl tensor

Our results

Heatllic rp-component
The EGB field equations rp-component takes the form:
(D =3)©,, — 27x|(D — 5)(28""®,1"Ryn — *RO,y)
—2(D-3)(D-4)0,0, — (D —3)*(D — 4)0%0 pguu
— (D —3)(D —4)00 pguu,; — (D — 4)*00 pg"" gyun,u
+ (D — 4)%00 118" gnpu — 2(D — 3)(D — 4)@ O ,guu
+ (0, +0%)(D —4)(2(D - 3)0 pguu

+ (D —3)Oguu,p — ngngm[p,uﬂn})} =0
For simplicity and in analogy with GR (coordinate freedom) we set:

©,=0 thatis ©=0(ru)
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rr-component

rp-component

ru-component, etc.
Constraints on the Weyl tensor

Our results

Results:

and then the rp-component simplifies to:

2’}'K(D - 4) (®,T + 62) ((D - 3)®guu,p - zgmngm[p,an]) =0

o identically satisfied for ® , + ®2=0

@ combination with the rr-component
SRHp = erG)dr@(D - 3)hkl [(D — B)hkl,qu — (D — z)hkp,qu}

where *R is the transverse space scalar curvature
and ||, its compatible covariant derivative
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rr-component

rp-component

ru-component, etc.
Constraints on the Weyl tensor

Our results

Heatllis ru-component
Using the above assumptions, ru-component takes the form:

1 1 1 1
ESR —A+(D-2) (@,u + Egklgkl,u + E@guu,r + Orguu + E(D - 1)®Zguu)

T 29k [(D —4)°RO,, + (D —2)(D — 3)(D — 4)0%0 ,guu

+ %(D - 4)®(Sngl - 2stl)gkl,u + %(D - 4)®5Rguu,r
+(D-3)(D - 4)®®,ugklgkl,u +(D-3)(D - 4)®®,rguugklgkl,u
1 1 iy
+ 5(D =2)(D =3)(D ~ ) guuguur — 7 (D —3)(D ~ )0 g"gix .51

1 1

+ 4 CRig — Ry +°R?) + 5(D — 4)°Rguu (20, + (D — 3)0?)
1

+1(D—2)(D=3)(D - 4)0%, (D - 10 +40,)| =0

Combination with the previous equations.
Results also for pg, up, and uu components, however, even more messy.
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Hesi Additional constraints — Weyl type

The Weyl tensor frame irreducible components are:

Yi =0

Y =0 Yo =

¥as = p=1 P Yoo = mlpmj ooz (*Rpg — 5% °R)
Y, =0 ‘T’zi/kl m;"m]pmzm? SCmpnq

Yari = mlp % Vp ‘?31']* = mfm;”mz (Xpmq - % gp[qu])

0 X; = gMXpmgand W = gPTW,,
o SCmp,lq, Squ, and °R encoding the transverse space curvature

Coefficients , P, V}, Xpmg and Wy, are ...
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rr-component

rp-component

ru-component, etc.
Constraints on the Weyl tensor

Our results

Hesi Additional constraints — Weyl type
Coefficients , P, Vp, Xpmg and Wy, are ...

S

P = (%guu,r - ®guu)’, + W - 2®,u

Vp = = 38uurp— 538" (Smfpulin)) +©@ [ Suup — 38 8npu — 353

Xpmg = 8plm,ullq)

grn gnp,u]

_ 1 1 1 1 1
Wpg = —28uu|lpg — 28pauu + 18uur&pgut 18" §mpugngu—20O8uugpqu

In addition to the field equations, we have to employ conditions:

Y5 =0 Yorw =0 ‘?zijkl =0 ‘?31‘,‘1( =0

We are primarily interested in such RT spacetimes, where the only
non-vanishing Weyl component is:

o — P _ 8m ,mn
Yy = m;m; (Wpg = 52 8"" Winn)

RT spacetimes in the EGB theory
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Summary

Robinson-Trautman solutions to Einstein—-Gauss—-Bonnet gravity:

@ we have derived the explicit form of the EGB field equations
@ we have identified distinct subclasses

@ we try to employ additional constraints on the Weyl tensor to
find a generic Weyl type N solution in contrast to D > 4 GR

This is almost complete; however, it is still a work in progress.

This talk will be summarised in the upcoming paper:

Robinson—Trautman spacetimes in the Einstein-Gauss-Bonnet theory
N. Astudillo Neira, R. Svarc, hopefully appear soon on arXive

Thank you for your attention!
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