
Motivation and preliminaries
Our results

Summary

Robinson–Trautman spacetimes in the
Einstein–Gauss–Bonnet theory

Natalia Francisca Astudillo Neira and Robert Švarc
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Motivation: Why study RT spacetimes in EGB theory?

General relativity in D = 4: the best theory of gravity we have!

General relativity in D > 4: interesting toy model

RT in D = 4 GR: Weyl algebraic type II and more special
(black holes, C-metric, gravitational waves, ...)

RT in D > 4 GR: Weyl algebraic type D
(black holes only)

Is this D = 4 versus D > 4 discrepancy due to:
the gravity theory or the geometric nature of RT class?

Study RT class in the natural D > 4 GR extension, i.e., in EGB theory!

Natalia Francisca Astudillo Neira RT spacetimes in the EGB theory 3 / 16



Motivation and preliminaries
Our results

Summary

Our goal
General relativity
Modifying general relativity
Einstein–Gauss–Bonnet theory
Robinson–Trautman spacetimes

Preliminaries: General Relativity

General Relativity formulated by a variational principle:

the vacuum Einstein–Hilbert action in any dimension D

S =
∫

dDx
√
−g

1
k

(
R − 2Λ

)
δS = 0: the equations of motion

Rµν −
1
2

gµνR + gµνΛ = 0

Einstein’s equations: system of 2nd order non-linear PDEs
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Preliminaries: Extensions of GR

Why to modify Einstein’s general relativity?

cosmological issues: dark energy, dark matter
small scales: singularities, compatibility with quantum
description

How to modify Einstein’s general relativity?

number of dimensions
various (exotic) matter contributions
geometry
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Preliminaries: EGB theory – action

non-trivial representative of Lovelock gravities (Lovelock 1971)

the heterotic string theory limit for low energies e.g. (Gross and Sloan 1987)

It is introduced via the Gauss–Bonnet term in the action:

S =
∫

dDx
√
−g

[
1
k
(R − 2Λ) + γLGB

]
where the LGB stands for

LGB = Rcde f Rcde f − 4RcdRcd + R2

where R is the Ricci scalar, and Λ, k and γ are constants (γ = 0 ⇔ GR).

EGB theory preserves the 2nd order field equations and is thus the
natural extension of general relativity to higher dimensions.
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Preliminaries: EGB theory – field equations
The field equations are obtained using δS = 0:

Rab − 1
2 R gab + Λ gab + 2kγ Hab = 0

where

Hab ≡ R Rab − 2Racbd Rcd + Racde Rb
cde − 2Rac Rb

c − 1
4 gab LGB

with
LGB ≡ Rcde f Rcde f − 4 Rcd Rcd + R2

Our goal is:

to explicitly derive and analyse these 2nd order equations for
the Robinson–Trautman geometric ansatz

to compare properties of obtained solutions in the EGB gravity
with those of D > 4 GR
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Preliminaries: Geometry of null congruences

The transverse behavior of a geodesic congruence generated by a null
vector field k is characterized by optical scalars.

Expansion: Shear: Twist:

Θ = 1
D−2 ka

;a σ2 = k(a;b)k
a;b − 1

D−2 (k
a
;a)

2 A2 = −k[a;b]k
a;b

Robinson–Trautman geometries: spacetimes admitting
non-twisting, shear-free and expanding null geodesic congruence.
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Preliminaries: RT geometries – adapted coordinates
Twist-free condition k[a;b] = 0 ⇔ ∃ null foliation with k normal
D-dim non-twisting spacetime in r, u, xp (p = 2, .., D − 1) coordinates:

u = const labels null hypersurfaces

k = ∂r is a generator of a non-twisting congruence

r is an affine parameter along such a congruence

u = cst. ∧ r = cst. is D − 2-dim space gpq

The non-twisting metric gab becomes:

ds2 = gpq(r, u, x)dxpdxq + 2gup(r, u, x)dxpdu− 2dudr+ guu(r, u, x)du2

Shear-free condition:

gpq,r = 2Θgpq ⇔ gpq = exp
(
2
∫

Θ(r, u, x)dr
)

hpq(u, x)

Employ the field eqs.!
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Results: rr-component
For simplicity and in analogy with GR we set:

gup(r, u, x) = 0

and the RT metric, we want to study, becomes:

ds2 = guu(r, u, x)du2 − 2dudr +R(r, u, x)hpq(u, x)dxpdxq

The EGB field equations rr-component takes the form:

(Θ,r + Θ2)
[
D − 2 + 2κγ(D − 4)

(sR + (D − 2)(D − 3)Θ2guu

− (D − 3)Θgmngmn,u + 4(D − 3)gmnΘ,mΘ,n
)]

= 0

Two branches of solutions w.r.t. Θ,r + Θ2

Θ,r + Θ2 = 0 → Θ ≈ r−1 ... GR-like behavior

Θ,r + Θ2 ̸= 0 → e.g. constraint on guu
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Results: rp-component

The EGB field equations rp-component takes the form:

(D − 3)Θ,p − 2γκ
[
(D − 5)(2gmnΘ,m

sRpn − sRΘ,p)

− 2(D − 3)(D − 4)Θ,uΘ,p − (D − 3)2(D − 4)Θ2Θ,pguu

− (D − 3)(D − 4)ΘΘ,pguu,r − (D − 4)2ΘΘ,pgmngmn,u

+ (D − 4)2ΘΘ,mgmngnp,u − 2(D − 3)(D − 4)Θ,pΘ,rguu

+ (Θ,r + Θ2)(D − 4)
(
2(D − 3)Θ,pguu

+ (D − 3)Θguu,p − 2gmngm[p,u||n]
)]

= 0

For simplicity and in analogy with GR (coordinate freedom) we set:

Θ,p = 0 that is Θ = Θ(r, u)
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Results: rp-component

and then the rp-component simplifies to:

2γκ(D − 4)(Θ,r + Θ2)
(
(D − 3)Θguu,p − 2gmngm[p,u||n]

)
= 0

identically satisfied for Θ,r + Θ2 = 0

combination with the rr-component

sR||p = e2
∫

ΘdrΘ(D − 3)hkl
[
(D − 3)hkl,u||p − (D − 2)hkp,u||l

]
where sR is the transverse space scalar curvature
and ||p its compatible covariant derivative
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Results: ru-component

Using the above assumptions, ru-component takes the form:

1
2

sR − Λ + (D − 2)
(

Θ,u +
1
2

gkl gkl,u +
1
2

Θguu,r + Θrguu +
1
2
(D − 1)Θ2guu

)
+ 2γκ

[
(D − 4)sRΘ,u + (D − 2)(D − 3)(D − 4)Θ2Θ,uguu

+
1
2
(D − 4)Θ

(sRgkl − 2sRkl)gkl,u +
1
2
(D − 4)ΘsRguu,r

+ (D − 3)(D − 4)ΘΘ,ugkl gkl,u + (D − 3)(D − 4)ΘΘ,rguugkl gkl,u

+
1
2
(D − 2)(D − 3)(D − 4)Θ3guuguur −

1
4
(D − 3)(D − 4)Θ2gijgkl gik,ugjl,u

+
1
4
(sR2

ikjl − 4sR2
kl +

sR2)+ 1
2
(D − 4)sRguu(2Θ,r + (D − 3)Θ2)

+
1
4
(D − 2)(D − 3)(D − 4)Θ2g2

uu
(
(D − 1)Θ2 + 4Θ,r

)]
= 0

Combination with the previous equations.
Results also for pq, up, and uu components, however, even more messy.
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Results: Additional constraints – Weyl type
The Weyl tensor frame irreducible components are:

Ψ0ij = 0

Ψ1Ti = 0 Ψ̃1ijk = 0

Ψ2S = D−3
D−1 P Ψ̃2T(ij) = mp

i mq
j

1
D−2

( SRpq −
gpq

D−2
SR

)
Ψ2ij = 0 Ψ̃2ijkl = mm

i mp
j mn

k mq
l

SCmpnq

Ψ3Ti = mp
i

D−3
D−2 Vp Ψ̃3ijk = mp

i mm
j mq

k
(
Xpmq − 2

D−3 gp[mXq]
)

Ψ4ij = mp
i mq

j
(
Wpq −

gpq
D−2 W

)
with

Xq ≡ gpmXpmq and W ≡ gpqWpq

SCmpnq, SRpq, and SR encoding the transverse space curvature

Coefficients , P, Vp, Xpmq and Wpq are ...
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Results: Additional constraints – Weyl type
Coefficients , P, Vp, Xpmq and Wpq are ...

P =
( 1

2 guu,r − Θguu
)

,r +
S R

(D−2)(D−3) − 2Θ,u

Vp = − 1
2 guu,rp− 1

D−3 gmn(gm[p,u||n]
)
+Θ

[
guu,p − 1

2 grngnp,u − 1
2(D−3) grngnp,u

]
Xpmq = gp[m,u||q]

Wpq = − 1
2 guu||pq − 1

2 gpq,uu + 1
4 guu,rgpq,u+

1
4 gmngmp,ugnq,u− 1

2 Θguugpq,u

In addition to the field equations, we have to employ conditions:

Ψ2S = 0 Ψ̃2T(ij) = 0 Ψ̃2ijkl = 0 Ψ̃3ijk = 0

We are primarily interested in such RT spacetimes, where the only
non-vanishing Weyl component is:

Ψ4ij = mp
i mq

j
(
Wpq −

gpq
D−2 gmnWmn

)
i.e. Weyl type N in D > 4
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Robinson–Trautman solutions to Einstein–Gauss–Bonnet gravity:

we have derived the explicit form of the EGB field equations

we have identified distinct subclasses

we try to employ additional constraints on the Weyl tensor to
find a generic Weyl type N solution in contrast to D > 4 GR

This is almost complete; however, it is still a work in progress.

This talk will be summarised in the upcoming paper:

Robinson–Trautman spacetimes in the Einstein-Gauss-Bonnet theory
N. Astudillo Neira, R. Švarc, hopefully appear soon on arXive

Thank you for your attention!
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