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Arscott emphasized in the preface of his book1 the significance of

pursuing analytic solutions rather than depending solely on

numerical methods.
”...fall back on numerical techniques savours somewhat

of breaking a door with a hammer when one could, with a

little trouble, find the key”.

The determination of the integrability properties of dynamical

systems is essential in physics and in all areas of applied

mathematics. The novelty when a physical system is described by

an integrable dynamical system is that we know that an actual

solution exists when we apply numerical methods for the study of

the system, or there exists a closed-form function which solves the

dynamical system.

1F.M. Arscott, Periodic Differential Equations, Pergamon Press, (1964)
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The precise meaning of the solution for a system of differential

equations can be cast in several ways. Three of these are:

• A set of explicit functions describing the variation of the

dependent variables with the independent variable(s)

(Closed-form solutions)

• The existence of a sufficient number of independent explicit

first integrals and invariants.

• The existence of a sufficient number of explicit

transformations which permits the reduction of the system of

differential equations to a system of algebraic equations.
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In gravitational physics exact/analytic solutions2:

• Allow for the precise modeling of gravitational fields and

spacetime structures (Strong field Black holes, Early Universe

Inflation, Dark Energy, Deviation from GR in modified

gravity).

• Serve as reference points for evaluating numerical simulations

and approximation techniques (Verify the accuracy of the

approximation especially near singularities3 i.e. Kasner

approximation in the Mixmaster, give insing on the initial

value problem).

• Reduce the necessary computing power. (perturbations, data

analysis).
2H. Stephani et al, Exact Solutions of Einstein’s Field Equations (2003)

3M.A.H. MacCallum, Exact solutions in cosmology (1984)
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Exact solutions of special interests:

• Isotropic and homogeneous Cosmology: de Sitter Universe;

ΛCDM; Milne Universe.

• Anisotropic and homogeneous Cosmology: Kasner; Bianchi III

(Kantowski-Sachs); Bianchi VIIh.

• Inhomogeneous Cosmology: LTB; Stephani metric; Barnes

metric; Szekeres spacetimes.

• Black holes: Schwarzschild; De Sitter-Schwarzschild;

Reissner-Nordström; Kerr.
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The Jacobi metric and the Eisenhart lift are distinct methods for

geometrically representing dynamical systems. Notably,

autonomous dynamical systems can be formulated as a set of

geodesic equations. In this investigation, we focus on the Eisenhart

lift, a technique that involves augmenting the dimensionality of the

dynamical system. Specifically, this geometrization process entails

introducing additional dimensions through the inclusion of new

dependent variables. A novel kinetic metric is introduced,

characterized by at least one isometry associated with a Noetherian

conservation. When this isometry is applied, the geodesic

equations are reduced back to the original dynamical system.
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Consider the Hamiltonian Function H ≡ 1
2p

2
x + V (x) = h.with

equations of motion ẋ = px , ṗx = −V,x .

Via the Eisenhart lift we can introduce the equivalent

Hamiltonian H1+1 ≡ 1
2p

2
x +

α
2V (x) p2z = h1+1.which describes the

geodesic equations of the 2D space with line element

ds2(1+1) = dx2 + 1
αV (x)

dz2 , and equations

ẋ = px , ṗx = −α

2
V,xp

2
z

ż = αV (x) pz , ṗz = 0.

The solution of the latter is a solution of the original system iff

h1+1 = h and α
(
p0z
)2

= 2.
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The lift is not unique. Alternative lifts are

H1+2 ≡
1

2
p2x + V (x) p2u + pupv = hn+2, pupv − hn+2 = h

H1+3 =
1

2
p2x +

α

2
F1 (x) p

2
z + F2 (x) p

2
u + pupv = h1+3,

V (x) =
α

2
F1 (x) p

2
z + F2 (x) p

2
u + pupv , pupv − h1+3 = h

and many other...
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We can introduce the equivalent system

H ≡ 1
2p

2
x + V (x)− h = 0, such that

U (x) = V (x)− h, U,x = V,x Then, the extended Hamiltonian

reads

H̃1+1 ≡
1

2
p2x +

α

2
U (x) p2z = 0,

with the same equations of motion, but energy zero (null

geodesics). However, null geodesics are invariant under conformal

transformations, that is, the solution is the same and for the

singular Hamiltonian system

H̃1+1 ≡ N2

(
1

2
p2x +

α

2
U (x) p2z

)
= 0,
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For the 1D original system H, the extended Hamiltonian H̃1+1

describes the null geodesics of the 2D space with line

element ds = dx2 + 1
αU(x)

dz2. All 2D spacetimes are conformally

flat. Indeed, under the change of variables

dx =
(
U
(∫

F (x) dx
))− 1

2 dX , the line element

ds2(1+1) =

(
U

(∫
F (x) dx

))−1 (
dx2 + dz2

)
., (1)

Consequently, the Hamiltonian reads

H̃1+1 ≡ U
(∫

F (X ) dX
) (

p2X + 1
αp

2
z

)
= 0. The equations of

motion read Ẍ = 0, z̈ = 0.
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The minisuperspace description is essential within gravitational

theories, as it allows us a better understanding of the dynamics

and permits a physical description on geometrodynamical terms.

• The gravitational field equations can be expressed in a more

simplified manner so as to give to certain degrees of freedom4.

• The establishment of a point-like Lagrangian function,

facilitates the utilization of mathematical tools and techniques

from analytical mechanics.

• The equivalent Hamiltonian formulation, through the use of

the Dirac-Bergmann algorithm5 allows the distinction of the

true degrees of freedom for the reduced gravitational system.

This is useful, especially in cases where the generic

Hamiltonian formalism of GR.
4M.P. Ryan and L.C. Shepley, Homogeneous Relativistic Cosmologies,

Princeton University Press (1975)
5P.A.M. Dirac, Canad. J. Math 2 (1950); J. Anderson and P. Bergmann, PR.

83 (1951)
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Consider the line element

ds2 = −a2 (r) dt2 + n2 (r) dr2 + b2 (r)
(
dθ2 + sin2 θ dϕ2

)
.

Only two of the three scale factors a (r), b (r) and n (r) are

essential, and they are determined by the solution of the field

equations.

In the presence of Λ the solution of Einstein’s field equations gives

the de Sitter-Schwarzschild solution

ds2 = −
(
1− rs

r
− Λ

3
r2
)
dt2 +

(
1− rs

r
− Λ

3
r2
)−1

dr2 + r2dΩ2.

The point-like Lagrangian which describes the evolution of the

scale factors, leading to the analytic solution is

LΛ (n, a, a′, b, b′) = 1

2n

(
8ba′b′ + 4ab′2

)
+ 2na

(
1+ Λb2

)
.
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We introduce the equivalent Hamiltonian function in the

Eisenhart-Duval lift formalism

HΛ = n
(papb

4b
− a

8b2
p2a − 2a

(
1+ Λb2

)
p2ψ

)
,

with constraints HΛ = 0 and pψ = 1.

The Cotton-York tensor for the extended minisuperspace has zero

components, thus the space is conformally flat. We define the new

variables a =
√

A
b , dB = b+ Λ

3 b
3 and A = X+Y

2
√
2
, B = X−Y

2
√
2

,

n̂ =
(
1+ Λb2

)
n
(
b
A

) 1
2 .
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The extended minisuperspace reads

dsΛ 2 = 1
2n̂

(
dX 2 − dY 2 − dψ2

)
. The field equations are written

in the equivalent form of the free particle, i.e.

X ′′ = 0 , Y ′′ = 0 , ψ′′ = 0,with X ′2 − Y ′2 − ψ′2 = 0 , pψ = 1.

The Schwarzschild black hole, share a common solution space,

which is that of the null geodesic equations in a conformally flat

extended minisuperspace. It’s important to note that this

transformation does not relate the physical space but rather the

space of solutions for the scale factors of spacetime.
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With this approach we found that the solution space for the field

equations of the following gravitational models is that of the

geodesic equations for the flat space.

• GR Vacuum within LRS Bianchi II, LRS Bianchi V & LRS

Bianchi VI background.

• Szekeres solution with or without cosmological constant.

• Spatially flat FLRW

S =
∫ √

−gd4x
[
R − 1

2g
µνϕ;µϕ;ν + V (ϕ)

]
, for the

exponential potential V (ϕ) = V0e
−λϕ, and its conformal

equivalent theories.

• Spatially flat FLRW quintessence scalar field with Chameleon

mechanism and an ideal gas, for exponential potential and

exponential coupling.

• In modified theories.

15



The common feature of these geometric linearizable gravitational

models is the presence of the D ⊗s T2 Lie algebra. The origin of

this algebra is on the elements of the conformal algebra for the

conformally flat extended minisuperspace. The application of the

constraint pψ = 1, in order to determine the original system,

indicates that the elements of D ⊗s T2 remain local symmetries.

Indeed, when a two-dimensional constraint Hamiltonian system is

invariant under point transformations with generators the elements

of the D ⊗s T2 Lie algebra, the dynamical system can be linearized,

and the closed-form solution of the field equations can be written

in analytic form given by the solution of the free particle.
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Consider the minisuperspace Lagrangian for the ΛCDM model

L (N, a, ȧ) =
3

N
aȧ2 +N

(
2Λa3 + ρm0

)
.

We observe that when a ≃ r
2
3 , the gravitational field equations are

equivalent with the “oscillator”. When Λ = 0, we end with the

equation for the free particle.

Is there a transformation which relates the two solutions? Lie’s

transformation fails because does not preserve the constraint

equation.
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We introduce the extended Hamiltonian function

HΛ
lift ≡ N

(
p2a
12a

+ pupv −
(
ωa3 + µ

)
p2v

)
= 0.

The equations of motion are

1

N
ȧ =

pa
6a

,
1

N
u̇ = pv − 2pu ,

1

N
v̇ = pu,

1

N
ṗa = 3ωa2pu ,

1

N
ṗu = 0 ,

1

N
ṗv = 0,

in which pu = p0u and pv = p0v are conservation laws. The original

ΛCDM model is recovered when

ρm0 = µp0v − p0up
0
v and Λ =

ω

2

(
p0u
)2

.
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Consider now the extended Hamiltonian for the CDM model,

HCDM
lift ≡ N

(
p2a
12a

+ pupv − µp2v

)
= 0,

with constraint ρm0 = µp0v − p0up
0
v .

The WdW equation is calculated

1

6a

(
∂2

∂a2
− 1

2a

∂

∂a

)
Ψ +

∂

∂v

(
∂

∂u
+ µ

∂

∂v

)
Ψ = 0
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When we apply the operators(
i ∂

∂u + p0u

)
Ψ = 0 ,

(
i ∂

∂v + p0v

)
Ψ = 0, we calculate the

wavefunctionΨ = Ψ̄ (a) e−i(p0uu+p0vv) with

Ψ̄ (a) = Ψ̄1 exp

(
4

√
ρm0

3
a

3
2

)
+ Ψ̄2 exp

(
−4

√
ρm0

3
a

3
2

)
ρm0 = µ

(
p0v
)2 − p0up

0
v . The wavefunction is written in the

form Ψ ≃ e−iSCDM (a,u,v ), where function SCDM (a, u, v)

SCDM (a, u, v) = ±4

√
ρm0

3
a

3
2 +

(
p0uu + p0vv

)
, (2)

which is the action for the CDM model.
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The WdW equation is invariant under the transformation with

generator 6

X = 2ua
∂

∂a
+ 3

(
1+ u2

) ∂

∂u
+

(
2

µ

β
+ 3+ 6µ −

(
3µu2 + 2a3

)) ∂

∂v
.

In the canonical variables

a =
α

cos
(√

3
2βU

) 2
3

, u =
1
√

µ
tan

(√
3

2
βU

)
, (3)

v =

√
2µ

3β
(µU + V )−

√
µ

3

(
3+ 4α3

)
tan

(√
3

2
βU

)
, (4)

the vector field reads X = ∂V and the WDW equation

1

6α

(
∂2

∂α2
− 1

2α

∂

∂α

)
Ψ +

∂

∂V

(
∂

∂U
+
(
µ − 2βα3

) ∂

∂V

)
Ψ = 0,

6A.P. arXiv:2405.20683
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We define the quantum operators(
i ∂

∂U + p0U

)
Ψ = 0 ,

(
i ∂

∂V + p0V

)
Ψ = 0, and the wavefunction is

derived Ψ (α,U,V ) = Ψ̂ (α) e−i(p0UU+p0VV ).

In the WKB approximation, Ψ̂ (α) ≃ e iSΛ(α), we end with the

Hamilton-Jacobi equation for the classical limit

1

12α

(
∂SΛ

∂α

)2

−
(
2Λα3 + ρm0

)
= 0,

with constraints 2Λ = −βp0V and ρm0 = µ
(
p0v
)2 − p0up

0
v . This is

the Hamilton-Jacobi equation for the ΛCDM model with scale

factor α (t). In a similar way we can apply similar transformations

and construct new solutions for the WDW equation which describe

universes with different value of Λ.
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The above gravitational models have common solution space, that

is, the equations of motions for the free particle. Consequently

they share the same extended WdW equation expressed in different

coordinate system.

The relaxation of the first-class constraints of quantum cosmology

can be used to construct different solutions via equivalence

transformation and the different gravitational models.
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Figure 1: Canonical structure for the solution space between the

different cosmological models
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