Black Mirrors: CPT-Symmetric Alternatives to Black Holes

arxiv:2412.09558 [hep-th]

Kostas Tzanavaris, Latham Boyle, Neil Turok

Higgs Centre for Theoretical Physics

September 2, 2025

Schwarzschild: Uter das Gravitationsfeld eines Massenpunktes
Sitzber. Deut. Akad. Wiss, (1916)

Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie.

Von K. Schwarzschild.

(Vorgelegt am 13. Januar 1916 [s. oben S. 42].)

Figure 1: Karl Schwarzschild (9 Oct. 1873 - 11 May 1916)

$$ds^2 = -(1 - 2m/r) dt^2 + \frac{dr^2}{1 - 2m/r} + r^2(d\theta^2 + \sin^2\theta d\phi^2).$$

On Continued Gravitational Contraction

J. R. Oppenheimer and H. Snyder University of California, Berkeley, California (Received July 10, 1939)

Figure 2: Julius Robert Oppenheimer (1904-1967) and Hartland Snyder (1913-1962)

Conventional black holes

Figure 3: (a) The Penrose diagram representing the Kruskal extension of the Schwarzschild solution (Kruskal (b) The Penrose diagram of the more realistic model of Oppenheimer-Snyder describing spherical collapse.

Problems with black holes: Cauchy horizons

Figure 4: Cauchy horizons in a Kerr black hole: Initial data in Σ cannot be evolved past \mathcal{CH}_+ . These are stable under non-linear perturbations (Dafermos, Rodniaski, Luk).

Problems with black holes: The information paradox

Figure 5: Evaporating black holes breaks unitarity in the semiclassical approximation, as Σ' cannot be evolved backwards to Σ .

The Black Mirror

Figure 6: The Black Mirror as a quotient of an asymptotically flat and spherically symmetric black hole. The temporal and spatial orientation of the two regions are opposite to each other.

Motivation: Gravity obeys CPT

The CPT symmetric universe¹

Figure 7: The CPT symmetric universe consists of two mirror images joined at the initial singularity.

¹L. Boyle, K. Finn, N. Turok, CPT-symmetric universe, *Phys. Rev. Let.* **121**, 251301.

PT transformations

Definition. A PT transformation is a reflection of the space-time that reverses temporal and spatial orientations.

PT transformations

Definition. A PT transformation is a reflection of the space-time that reverses temporal and spatial orientations.

Figure 8: The map $(U, V) \rightarrow (-U, -V)$ is a PT transformation; it reverses the orientation of Cauchy surfaces t = const. and reverses the time orientation.

► Conserved charges:

$$Q_{\Sigma} = \int_{\Sigma} j, \quad dj = 0.$$

Conserved charges:

$$Q_{\Sigma} = \int_{\Sigma} j, \quad dj = 0.$$

▶ If the topology of the space-time is simply connected, then:

$$Q_{\Sigma} = \int_{\partial \Sigma} \sigma, \quad j = d\sigma.$$

Conserved charges:

$$Q_{\Sigma} = \int_{\Sigma} j, \quad dj = 0.$$

▶ If the topology of the space-time is simply connected, then:

$$Q_{\Sigma} = \int_{\partial \Sigma} \sigma, \quad j = d\sigma.$$

Thus, a C transformation must satisfy

$$C^*j = -j$$

Conserved charges:

$$Q_{\Sigma} = \int_{\Sigma} j, \quad dj = 0.$$

▶ If the topology of the space-time is simply connected, then:

$$Q_{\Sigma} = \int_{\partial \Sigma} \sigma, \quad j = d\sigma.$$

Thus, a C transformation must satisfy

$$C^*j = -j$$

► For Kerr black holes, this is achieved by the inversion of the 2-sphere:

$$(\theta, \phi) \rightarrow (\pi - \theta, \pi + \phi).$$

Conserved charges of Black Holes

Figure 9: The conserved charges of an asymptotically flat Black Hole are zero. For black mirrors, the conserved (net) charges calculated by the 2-integrals are non-zero!

The Black Mirror as a saddle point of the action

Start with the general spherically symmetric metric:

$$ds^{2} = -a(t,x)^{2}dt^{2} + 2S(t,x)dtdx + L(t,x)^{2}dx^{2} + r(x)^{2}d\Omega^{2}$$

Vary the total gravitational action (EH + boundary terms):

$$S = \frac{1}{2} \int dt dx \left(aL + \frac{r'(ar' + 2ra')}{L} + 2S \frac{rr'\dot{L}}{aL^2} \right),$$

with the additional boundary condition that $x \to -x$ is an isometry.

Figure 10: CPT symmetric boundary conditions at infinity

The saddle-point of this action for L=1 and S=0 that respects CPT symmetry $(x \rightarrow -x)$ is

$$r = 2m \cosh^2 \chi$$
, $a = \tanh \chi$

where

$$x=m\left(2\chi+\sinh(2\chi)\right).$$

This is equivalent to the Einstein-Rosen parametrization

$$r(\sigma) = 2m \left[1 + \left(\frac{\sigma}{4m}\right)^2\right].$$

The entropy of black mirrors

If we repeat this procedure in Euclidean time and integrate over

both regions we get zero.

The entropy of black mirrors

If we repeat this procedure in Euclidean time and integrate over

- both regions we get zero.
- the positively oriented region, then we get the Gibbons-Hawking entropy.

Summary

The Black Mirror is a saddle-point of the gravitational action that

- is comprised of two black hole exteriors glued at their horizons via antipodal identification.
- ► The two exteriors are *CPT* images of each other represents a pure state of the gravitational field.

Future directions

- Construct quantum fields in a Black Mirror background and study the Hawking radiation. Is it unitary?
- Extend this to dynamical space-times and make contact with observation. (See Pau-Amaro Seoane arXiv:2508.13272 [gr-qc].)
- Understand this orientation flip at the horizon using the Hironaka singularity blowup techniques.

Figure 11: The cusp of $y^2 = x^3$ can be resolved via vertical dragging (taken from Hauser (2003))

Matter fields in the CPT symmetric universe collapsing to Black Mirrors

Figure 12: In the CPT symmetric universe, one can construct an initial value problem with initial conditions on the singularity t=0 and evolve them such that the reflection $t\to -t$ is an isometry.

Case 1: CPT acts on points

Case 2: CPT acts on the tangent bundle

Case 2: CPT acts on the tangent bundle

Case 2: CPT acts on the tangent bundle

