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Plan 

• Self-force basics 

• Why study black-hole scattering? 

• Scattering calculations in a scalar-charge toy model 

• Scattering calculations for black holes (prelim) 

• Fresh ideas & prospects
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The self-force method
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Main idea: scattering as an efficient probe of strong interaction

Why scattering?

Rutherford scatteringEMRI “zoom-whirl” scattering
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• Diagnostic “observables” (e.g. scattering angle ) defined  
unambiguously from  asymptotics. 


• Handle on fuller binary parameter space


• 


• New way of calibrating EOB theory using post-Minkowskian 
 information (Damour 2016)


• “Boundary to bound” maps                                        
(Goldberger & Rothstein 2006; Kalin & Porto 2019+)


• Intense cross-disciplinary interest, new participants:            
EFT, QCD Amplitudes (Bern et al 2019+). 

χ
r → ∞

χ(E, b) ⇒ full Hamiltonian dynamics

χ

Why scattering?

Self-force calculations for scattering:  
‣ ``Easier'' than bound inspiral: no two timescales! 


‣ ``Easy'' access to full high-order PM theory (next slide)


‣ Access to strong-field dynamics: no weak-field approximation cr
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Self-force and post-Minkowskian theory
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• Heteroclinic orbit connects circular orbit to infinity, 
allowing identification of circular orbit’s “binding energy” as 
a Bondi-type quantity through .


• 1SF corrections to  and to  obtained by integrating 
self-force along the geodesic orbit:





O(m2)
Ωcirc Lcrit

Ω = (8M)−1(1 + 8ϵFr(4M) − 3ϵ∫
∞

−∞
Ft dτ)

L = Mm (4 + 4ϵ − 2ϵ + ϵ∫
∞

−∞
(Fφ − 8Ft)dτ)

Practice problem: (conservative) Self-force effects on the 
zero-energy zoom-whirl orbit (LB, Colleoni, Damour, Isoyama & Sago 2019)
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‣   (specific) Energy


‣    (specific) Angular Momentum


‣   impact parameter


‣            eccentricity 


‣     semilatus rectum


‣    periastron distance

E := gαβtαuβ
t→−∞

= (1 − v2
∞)−1/2 = γ∞

L := gαβφαuβ
t→−∞

> Lcrit(E)

b := r sin φ(t) − φ(−∞)
t→−∞

=
L

E2 − 1

e > 1

p > 6 + e

rmin =
pM

1 + e
> 3M

Scattering geodesics preliminaries
parametrisation (Schwarzschild)

… any two of these!
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Scattering orbits preliminaries

• Scattering angle: 





• Time delay: 





• Radiated energy and angular momentum: 


χ = ∫
∞

−∞

dφ
dτ

(τ; e, p, Fα
self) dτ − π + (δχ)frame = χ0SF + χ1SF + O(ϵ2)

Δt = ∫
∞

−∞ ( dt
dτ

(τ; e, p, Fα
self) −

dt
dτ

(τ; e, p,0)) dτ + (δΔt)frame = Δt1SF + O(ϵ2)

Erad = − ∫
∞

−∞
Fself

t (τ; e, p) dτ + (δE)frame Jrad = ∫
∞

−∞
Fself

φ (τ; e, p) dτ + (δJ)frame

“observables”

  (LB & Long 2022)χdiss
1SF = α(p, e)Erad + β(p, e)Jrad
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Scalar-charge toy model
• Charge Sources Klein-Gordon field :   





• Treat  as linear perturbation on Kerr, ignore gravitational self-
force, consider only back-reaction from :





• Deviation from geodesic remains small  during scattering, 
so at leading order can evaluate scattering observables by 
integrating  along limiting geodesic trajectory. 

Φ

∇α ∇αΦ = − 4πQ∫
∞

−∞
(−g)−1/2 δ4(x − z(τ))dτ

Φ
Φ

Fα
self = Q∇αΦ̃ ∝ Q2

[O(ϵ)]

Fself

Advantage: Similar mathematical structure, simpler field equation, no frame ambiguities 
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• 


• 1+1D field equation for  discretised and 
solved in double-null coords. 


• zero initial conditions, transient junk discarded 


•  constructed from  using mode-sum 
regularisation. 

Φ =
Q
r ∑

ℓ,m

ϕlm(r, t)Ylm(θ, φ)

ϕlm(r, t)

Fα
self(τ) ϕlm

t-domain numerical method
(LB & Long 2022)
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t-domain calculation sample results
(LB & Long 2022)

v = 0.2 b = 21M
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t-domain calculation sample results ( )v = 0.2
(LB & Long 2022)

( χ1SF

χ )/Q
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t-domain calculation sample results ( )b = 100M
(LB & Long 2022)

( χ1SF

χ )/Q
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Comparison with PM results from Amplitudes
(LB, Bern et al 2023)
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Comparison with PM results from Amplitudes
(LB, Bern et al 2023)
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δχcons
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χdiss

v = 0.5

Comparison with PM results from Amplitudes
(LB, Bern et al 2023)
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Comparison with PM results from Amplitudes
(LB, Bern et al 2023)
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v = 0.5

−χcons



Mω

• 


•  obtained by solving ODEs with BCs.  


• Much more precise than TD method in strong field.


•  reconstructed using the method of extended 
homogeneous solutions 

Φ =
Q
r ∑

ℓ,m
∫ dω ϕlmω(r)Ylm(θ, φ)e−iωt

ϕlmω(r)

ϕlm(r, t)

f-domain numerical method
(Whittall & LB 2023)
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A complication: Gibbs phenomenon
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ϕ00(r; t = const) ∇rϕ00(r; t = const)



• Trick recovers exp convergence of Fourier integral


• However, in scattering problem can only be applied in 
“internal” region


•  Loss of accuracy at large , especially at large , due to 
strong -mode cancellation in Fourier integral:     


                at small 

r l
ω

ϕhom
lmω ∼ rl |ω |

Method of extended homogeneous solutions
(LB, Ori & Sago 2008)
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f/t-domain hybridisation 
(Long, Whittall & LB 2024)
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(In this case, strong beaming 
sends power to large  modes, 
where TD method struggles.)

v = 0.7 b − bcrit = 0.001M
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Application: resummation of   using separatrix info  χPM
(Long, Whittall & LB 2024)
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Scattering angle diverges at separatrix:











χ0SF ∼ A0(v) log(b − bcrit(v))

χ1SF ∼
A1(v)

b − bcrit(v)

A1 = ∫
∞

−∞
(ct(v)Fself

t + cφ(v)Fself
φ )dτ

v = 0.5



Application: resummation of   using separatrix info  χPM
(Long, Whittall & LB 2024)
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Resummation formula:


χ̃ = χ4PM + A0 log(1 −
1 − ϵA1/A0

b/bcrit
)

+
4

∑
k=1

A0

k ( 1 − ϵA1/A0

b/bcrit
)k



Application: resummation of   using separatrix info  Erad
(LB, Gonzo, Leather, Long & Warburton, in prep 2025)
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Near separatrix  dominated by whirl 





Circular-orbit flux  known 
numerically, with accurate analytical fit 
over 

Erad ⇒

Erad ∼ ·Ewhirl × Twhirl × Nwhirl

∼ ·E(R) × T(R) × (χ + π)/(2π)

= ·E(R) ×
R2/M

6 − R/M
log(b − bcrit)

·E(R)

3M < R ≤ 6M



Resummed  using separatrix info (grav case) Erad
(LB, Gonzo, Leather, Long & Warburton, in prep 2025)
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Near separatrix  dominated by whirl 





Circular-orbit flux  known 
numerically, with accurate analytical fit 
over 

Erad ⇒

Erad ∼ ·Ewhirl × Twhirl × Nwhirl

∼ ·E(R) × T(R) × (χ + π)/(2π)

= ·E(R) ×
R2/M

6 − R/M
log(b − bcrit)

·E(R)

3M < R ≤ 6M



Scattering using NR with worldtube excision 
(Wittek, LB, Pfeiffer, Pound + PRL 2025)
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Metric in excision region around 
scalar charge approximated using 
self-force theory



Scattering using NR with worldtube excision 
(Wittek, LB, Pfeiffer, Pound + PRL 2025)
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Gravitational scattering: first attempts  
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• Flux calculations (without metric reconstruction 
or self-force): Hopper and Cardoso 2018, 
Warburton 2025, using frequency-domain 
solutions of the Regge-Wheeler equations. 


• LB & Long 2021: metric reconstruction from 
RW variables using a double-null time-domain 
code. 



Gravitational scattering: first attempts  
(Long & LB, 2021)
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• RW metric not useful for self-force calculations. 
Instead, apply Chandrasekhar trans. to  
Teukolsky Hertz potential, from which metric 
can be reconstructed in radiation gauge - suitable 
for self-force. 


• Alas, procedure involves taking 5th(!) numerical 
derivative of numerical field, impractical. 


• Much preferred: direct integration of the 
Teukolsky Hertz potential. 

s = − 2



Gravitational scattering: first attempts  
(Long & LB, 2021)
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•  Teukolsky equation develops 
  divergence at late time.  


• This is due to contamination from 
“advanced” modes, uncontrollable in 
our scheme. 


•  case is even worse:  
divergence

s = − 2
∼ t4

s = + 2 ∼ et/(2M)



Double the hype: hyperbolic scattering using 
comoving hyperboloidal coords  (Vaswani & LB; Macedo, LB, Long & Vaswani, in prep 2025 )
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• Compactification should ensure no 
contamination from advanced modes. 


• So far tried only with a scalar field


• Two versions: finite-difference and full spectral



Fresh ideas: Gegenbauer reconstruction  
(Whittall, LB and Long, in prep 2025 )
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• A method for overcoming difficulties inherent to Extended 
Homogeneous Solutions in f-domain calculations 


• Restores exp convergence at particle without mode cancellation 
problem. Also allows reconstruction of field in the “exterior” region, 
where EHS fails. 


• Procedure: 

Re-expand partial Fourier integral in Gegenbauer polynomials:


.


Then approximate  with  .


• Can prove that  converges exponentially fast to  as 
 with fixed  and .

F(t; ωmax) := ∫
ωmax

−ωmax

̂f(ω)e−iωtdω =
∞

∑
k=0

gλ
k (ωmax)Cλ

k (t)

F(t) GN(t; λ, ωmax) :=
N

∑
k=0

gλ
k (ωmax)Cλ

k (t)

GN F(t)
ωmax → ∞ N/ωmax λ/ωmax



Fresh ideas: restoring periodicity with analytic continuation  
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Prospects  

35

• Time-domain method: modern spectral/hyperboloidal code for 
Teukolsky equation or direct EFE integration in Lorenz gauge.


• Frequency-domain method: using Gegenbauer reconstruction 
and/or analytical extension to exploit periodicity.


• Analytical self-force calculation at large  is underway          
(LB & Whittall, in progress)


• 2nd-order self-force in scattering: formulation is underway, 
including frame fixing (Leplat, Pound, LB & Vaswani, in progress)


• Comparisons with NR simulations 

• PM resummation and determination of high-order PM terms
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extras



Boundary-to-bound maps 
Relations (established using EFT techniques) between bound-orbit & scattering 
observables, obtained via analytic continuation in parameter space:

• Periastron advance from scattering angle (shown in PM, EOB, 0SF): 





• Radiative energy & angular momentum loss (PM) (Cho, Kaelin, Porto 2022):


 


• Bound-orbit waveform snapshots from scattering amplitudes (PM)        
(Adamo, Gonzo, Ilderton 2024)

Δϕ(E, J) = χ(E, J) + χ(E, − J)

ΔEellip(E, J) = ΔEhyp(E, J) − ΔEhyp(E, − J)
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