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* Why modity gravity?
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* Review of Massive Gravity/Bigravity
* Emergence of Galileons

* Galileon Duality (Old Story)

* Generalized Galileon Duality (New Story)
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Why modity gravity?

Type I: UV Modifications:
eg. Quantum Gravity, string theory, extra
dimensions, branes, supergravity
At energies well below the scale of new physicsA

gravitational effects are well incorporated
in the language of Effective Field Theories

— b c
S = M}%lanck / d433 [ R+ ERZ + ERZV i PRabcng?”Refab + -+ + Luatter
—|—% (RabcdRade)2 + ... egCardoso et al 2018

Addition of Higher Dimension, (generally higher derivative operators), no
failure of well-posedness/ghosts etc as all such operators should be treated
perturbatively (rules of EFT)




Type 2: IR Modifications:

Principle Motivation is Cosmological:

Dark Energy and Cosmological Constant

I: Old cosmological constant problem:

Why is the universe not accelerating at a gigantic rate
determined by the vacuum energy?

II: New cosmological constant problem:

Assuming I is solved, what gives rise to the remaining vacuum
energy or dark energy which leads to the acceleration we
observe?



Why modity gravity (in the IR)?

[TI: Because it allows us to put better constraints on Einstein
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Figure 1: A parameter space for quantifying the strength of a gravitational field. The z-axis measures the
potential ¢ = GM/rc® and the y-axis measures the spacetime curvature £ = GM/r3c? of the gravitational
field at a radius r away from a central object of mass M. These two parameters provide two different

quantitative measures of the strength of the gravitational fields. The various curves, points, and legends D. Psaltls y LlVlng ReVleWS

are described in the text.
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Why is GGeneral Relativity so special?
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1. GR is Diffeomorphism Invariant

i.e. it exhibits 4 local symmetries -
(general Coordinate Transformations

o — ot (2

Every theory can be written in a coordinate invariant way, but there is
usually a preferred system of coordinates/frame of reference

- in GR there is no preferred system in the absence of matter

~ in the presence of matter there is a preferred reference frame,
e.g. the rest frame of the cosmic microwave background



2. In GR Gravity is described by the

curvature of spacetime

Einsteins equations take the form:

Curvature of Energy Momentum
spacetime X Density

G, =8nG1,

radius of curvature’2 (OX_ 1/energy density



3. GR is locally Lorentz Invariant

Every geometry is locally
Minkowski -

GR can be rewritten as spin-two
perturbations around Minkowski

E.o0.Ms for GR are Lorentz 1
invariant to all orders

g,UJV(CE) = Nuv T+ huy(m)
i~ Ryas(p) (2 — a)(o” — ) + O((z — 2)°)

Essentially a difterent phrasing of the equivalence principle -
ability to choice locally inertial frames



4. GR is unique theory of a massless spin-
two field

Metric perturbations transform as massless fields of spin 2!!
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There are only two physical polarizations
of gravitational waves!




Sketch of proof

Spin 2 field is encoded in a 10 component symmetric tensor

o

But physical degrees of freedom of a massless spin 2 field are d.o.f.
=2

We need to subtract § =2 x 4
This is achieved by introducing 4 local symmetries
Every symmetry removes one component since I is pure gauge and

the other is fixed by associated first class constraint (Lagrangian
counting)



Sketch of proof

Lorentz invariance demands that the 4 symmetries form a vector
(there are only 2 possible distinct scalar symmetries) and so we are
led to the unique possibility

o = Py + 0p& + 0,8,

We can call this linear Diff symmetry but its really just 4 U(1)
symmetries, its sometimes called spin 2 gauge invariance



(Quadratic action

Demanding that the action is local and starts at lowest order in
derivatives (two), we are led to a unique quadratic action which
respects linear difts

Py = by + B + Oy
M

S=[dz—F
K

5 1
h'u (h'uy — §h77,uﬂ/) _|_

Where ... are terms which vanish in de Donder/harmonic gauge. It has an
elegant representation with the Levi-Civita symbols .....

G /d4£l?€ABCD abcdnaAa thacth



Spin-2 (Gauge invariance of kinetic term




Unique result
Most complete proof Wald 1986

There are only two nonlinear extensions of the linear Dift
symmetry, (assumption over number of derivatives)

1. Linear Diff -> Linear Diff
h,ul/ — h,uu -+ a,ufy + al/f,u

2. Linear Diff -> Full Diffeomorphism
h,ul/ — h,ul/ =+ Swawh,uu =+ g,uwal/‘fw =+ gwuaugw

Guv = Nuw + "y Metric emerges as derived concept



Punch Line

Massless Spin 2 = Symmetric tensor + Gauge Symmetry

Nonlinear Spin 2 = Metric + Diffeomorphism Invariance

Geometry!!!!
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Basic Question

What happens if we repeat this arguments
starting with the assumption of a
massive spin 2 field?

i.e. suppose that the graviton is massive, are we
inevitably led to the Einstein-Hilbert action
(plus mass term)?



A toy example, Massive spin-1
Proca theory

1 2 1 2
L= Fp, — Gm* A,

Unitary gauge formulation for massive spin-1 particle

Canonical Analysis shows presence of second class constraint
- can analyse this way but better to reformulate as a first class
constraint - reintroduce broken gauge symmetry!



Stuckelberg picture

Easiest to understand in the Stuckelberg picture in which

reintroduce gauge invariance by means of a field redefinition
A, — A, +0.X
Lo 1 5 2
L= _ZF,UJ/ o im (AM T aMX)
Massive theory is now gauge invariant

A, — A, +0.&, x —x—¢&

Therefore number of degrees of freedom are
2 Au + I X



Free massive spin 2

In this case we should Stuckelberg the linear Diftf symmetry
h,ul/ — h,uu - a,ufl/ + 8v€,u

It we choose the massless kinetic term, Stuckelberg fields do not
enter

Py = Py + Ouxw + Ou Xy

There is a unique quadratic mass term
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What does massive gravity mean?

In SM, Electroweak symmetry
is spontaneously broken by the VEV of the Higgs field

SUR2) xU(l)y — U(1)gm
Result, W and Z bosons become massive

Would-be-Goldstone-mode in Higgs field becomes
Stuckelberg field which gives boson mass

Higgs Vev  Higgs Boson Stuckelberg field

\\

v+,0

e.g. for Abelian Higgs
A, — A, +0,X 0— p+ X



Symmetry Breaking Pattern

In Massive Gravity - Local Diffeomorphism Group and an
additional global Poincare group is broken down the diagonal

subgroup

Dif f(M) x Poincare — Poincaregiagonal

In Bigravity - Two copies of local Diffeomorphism Group are
broken down to a single copy of Dift group

Dif f(M) x Dif f(M) — Dif f(M)aiagonal



Higgs for Gravity

Despite much blood, sweat and tears an explicit
Higgs mechanism for gravity is not known

However if such a mechanism exists, we DO know how to write
down the low energy effective theory in the spontaneously broken

phase

For Abelian Higgs this corresponds to integrating out the Higgs boson and
working at energy scales lower that the mass of the Higgs boson

Higgs I&)Ason. Stuckelberg field
E < m, d=(v+pe™T

* Stuckelberg formulation of massive vector bosons



Stuckelberg Formulation
for Massive (Gravity

Arkani-Hamed et al 2002
de Rham, Gabadadze 2009

Diffeomorphism invariance is spontaneously broken but
maintained by introducing Stueckelberg fields

Vev of spin 2 Higgs field

' — O Stuckelber
defines a ‘reference metric’ Jur = (Ouv) uc g

reference metric fields

Dynamical Metric \

g V(.CIZ)
’ Fo = fa5(6)0,670,6"

helicity-1 mode of graviton
¢a — ¢ 1 \Aa 1 O A3 :mQMp
mM p A3 e

helicity-o mode of graviton



Helicity Zero mode = Galileon

The helicity zero mode 7(x) only enters in the combination

I1,,, = 0,0, 7(x)

This is invariant under the
global nonlinearly realized symmetry

m(x) = m(x) + c+ v,a"

1L, —11,,
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Discovering how to
square root

F,ul/ — fAB(¢)8M¢A8V¢B

1
A? 9%
mMp _l_AB8

¢CL:£E(J,_|_

Helicity zero mode enters reference metric squared

Fo, =1, - A3a 0,7 A6a Oqmd™ 0, m

To extract dominant helicity zero interactions we need
to take a square root

i ] 1
_\/g—lF_ » R Ny 13 0,0,

Branch uniquely chosen to give rise to 1 when Minkowski




de Rham, Gabadadze, AJT 2010

Hard As Massive Gravity

Dif f(M) x Poincare — Poincaregiagonal

1 / 2
K=1-— \/ g—1f d Characteristic
Det[1 + AK] = S Ny (K) < Polynomials
n=0

Unique low energy EFT where the strong coupling scale is
A3 ( 2 MP) 1 /3

5 propagating degrees of freedom
5 polarizations of gravitational waves!!!!



Hassan, Rosen 2011

Hard Massless plus A3 Massive Gravity
Dif f(M) x Dif f(M) — Dif f(M)diagonal

d
= (MPFR | + M?\/—fR[f] 2E:BnUn(K)>+£J\4
n=0

decoupling
Det[1 + AK] = ZA”Z/{ limit My = oo
K=1- \/ gL f '
1
S £‘§P< 22/% )+£M
1grav1ty-

massless graviton (2 d.o.f.)

+ massive graviton (5 d.o.f) +decoupled massless graviton f,,
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Universal Decoupling Limit: Galileon

At energies m < E < Mpranck As = (m2MP1anck)1/3

All Lorentz invariant Hard and Soft and Multi-graviton theories
look like Galileon theories (plus massless spin 2 plus Maxwell)

0,0,
T — T+ vt 4 c Ky = MAg

K=1-+g'f
.

' VAR R '
4 o 3 4—n n 4 _HYPT
A*Ly = TR_ AN M En anEEGTTKT | + A E Bp.q.r (X) K ( A2 )




Stuckelberg Formulation for Bigravity

Fasiello, AJT 1308.1647

d
1
L= (M]%\/—gR[g] + M7/~ fRIf] —m* ) BnUn(K)) + Ly
n=0
Dynamical metric 1 Dynamical metric 11
A B
g,ul/(a?) F,uV — fAB(¢)a,u¢ 8V¢
1 1 1
¢A — a?A I Ag aAT‘- Juv = Ny + M—Ph,ul/ f,LLI/ — Nuv - Mo Vyy



Explicitly Decoupling limit for Bigravity

1 B ] 1 de Rham, Gabadadze 2009
Mp " S = Tl Mp Fasiello, AJT 2013
massless hehc1ty 2

Guv = Nuv T+

massless helicity o

Shehclty 2/0 — __h,LWgOéBh _Uﬂygaﬁvaﬁ /
A3 M, A3

3 1. v % 3 Qqa A %
—=hH* () XH 4 “ 4+ AP0 (nd + T Y
4 A

1 n

Xw o — __ 6 €'LL"'5V'"(77 i H)nn3—n
2 (3 —n)In!

8a8b7r n=
3 1 Bn ~1) 4—
ymw — 8,ugl/(n_l_l—[)(n )77 n



Post-diagonalization: (Galileons

de Rham, Gabadadze 2009
Fasiello, AJ'T 2013

1 1
S = ‘/6143j {_Zhuygﬁfhaﬁ 4U,u1/5045va6:| -+ SGahleon -+ Smattercouphng

4
SGalileon = Z T Cn, Z/{n(K) Det + )\K Z )\nZ/{

KE = 919,

Novel feature, matter has “disformal’ couplings

1
Smatter coupling — d4CE’M—P (7TT -+ (9M778V7TT“V -+ ... )
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Fasiello, AJT 1308.1647

There are two ways to introduce Stuckelberg fields!

Dynamical metric 1 Dynamical metric 11
A B
g,uy(a?) FMV — fAB(¢)8M¢ 8V¢
i = ¢ x) = 2 + a.
OR

Dynamical metric 1 Dynamical metric 11

éAB(jj) — guV(Z)aAzuﬁBZV fAB(f)

(Galileon




Dual Galileons fields

“Galileon Duality’ - de Rham, Matteo Fasiello, AJT 2013
Curtright and Fairlie arXiv:1212.6972

For every Galileon field 7(x)
define the Dual Galileon field via the implicit field

redefinition
i = ¢ (z) = 2 + 0% (2)

ot = ZH(x) =z + 0P p(x)




Dual Galileons fields

i = ¢ (z) = 2 + 0% (2)
ot = 7% (x) =z + M p(x)

7(2) = —p(F) — 15 0p(@)*  p(F) = —7(x) + 5(On(x))’

Explicitly this is

p(x) = —7(x) + %(8@2 — %ﬁawﬁbﬂé’a@bﬂ + infinite number of terms. ..

or for spherical symmetry

p(r ‘|‘L an 2 (Orm)")




Dual Galileons Lagrangians
(Galileon operators: Lo(7) = mee(90T) 1nP ]

For every Galileon field Lagrangian in D spacetime dimensions
L(m) = coLo(m) + c3L3(m) + caly(m) + ...
admits a dual formulation as a Galileon
L(p) = p2L2(p) + psLs(p) +pala(p) + ...

with distinct coefficients
D+1

1 k(d—k+1)!
fn = ;::2(_1)ka (n —(k)!(d— ni—l)!




(Galileon Symmetry is Translation
Symmetry (for the other metrics
coordinates)

Dift(M) Stuckelberg 5 A_ A A Goalileon
_|_
Galileon )
transformation m(x) = m(x) + ¢+

¢ — ¢ 4+ vt Translation in & !

Dual Formulation

p(Z) — p(T) + u, @



Dual of a Free theory

A free theory in Minkowski spacetime which is a causal theory
with an analytic S-matrix with no strong coupling issues and is
UV-complete is dual to a quintic Galileon theory.

L= —%(@W)2 = ;(%)2 — %Lg(p) — é&;(p) L5(p)

Field redefinitions do NOT change physics - even at
quantum level



Duality works with Matter!

Any local coupling to matter maps to a local coupling to

matter in the dual theory
Example

Suaiter = [ &' (gn(o)n(a) = 5007 - jmxd)

is dual to
Smatter = /d"‘:c\/j (—g (p(w) + %((%)2) () — %GW(%C&/C) - %mzé“Z)

where

C(j) — X(ZIZ') E,uu — A38 Oy p

Gy = 77&5(77#& + Ypa) (Mg + Xup)
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Difterential Geometry shorthand

Introduce shorthand
eABC.... = 4,000, A NB2 NC" ...
For Lorentz index valued one-forms
A, = Ayqdat
So for example:

Nuadz! = dz, 0, 0,mdz” = A,



(Galileon Action

In this shorthand notation, the Galileon action in
d spacetime dimensions is

- _

S1 :/ chw e(dz) " (dom)"

n=0

Principle advantage: Although defining a theory on Minkowski,
notation is independent of coordinate system and hence
accommodates field dependent coordinate transformations



Galileon Duality (again)

~

w(x) = w(x) + %Aauw(x)ﬁ“w(a’;) auﬁ — aujT

ot = ot + \otw(x) .

S1 :/ chw e(dx)* ™ (dom)"

X = — %@m@“w

- d

' n=0

A

A 4

Y cn(® + AX) e(dE — AdOT) " (dOR)

n=0

n




(szeneralisation to Generic Scalar

Theories (in Minkowski) |

X = —5(3@2

Consider the general scalar theories leading to second order
equations of motion (Horndeski with frozen metric)

o _
o= / 5™ Y Fupg(6 X)e(da) " P~9(d0¢)" (d906)" (A X 99)

n=0 p,q=0

Consider a field dependent difteomorphism

ot =aF 4+ G(op, X)0Hp

dz = dz + G(d0¢) + G,qb(dqﬁ{)%) + G x (dX09¢)



X =~ (09

Field redefinitions .

41
SN B9, X)e(dz) T PI(d0g)" (dgde)P (AX )

n
I
—

n=0 p,q=0




Inverse Duality Transformation = Duality

Transformation -
=~ (90)

W(cb,X)



Integrability Condition

Consistency of the transformations 1

U X = —5(3@2
d¢ = 0,¢(z)dz"
Imposes an integrability condition of the naively 3 free
functions W,G,F

Wde — 2WXdG — WGAX = do + dF
Or equivalently

d(F +2WXG) = Wdé + WGAX + 2dW XG

This leads to a system of two dimensional differential equations - they
admit a solution only if the following integrability condition is satisfied

d(Wd¢ + WGAX + 2dWXG) =0

OxW + 28¢W(G + XaxG) = 8¢(WG) + 28}(WX8¢G‘



Recipe

Duality Transformation

1. Specity G
2. Solve integrability condition for W
OxW + 28¢W(G + XﬁxG) = 8¢(WG) + 28}(WX8¢G‘

3. Solve equation for F
d(F +2WXG) = Wd¢ + WGAX + 2dWXG

41
S = [ 132 3 Fupal0. X)=(da) "7 9(d06)" (4606 (AX00)"

n=0 p,q=0




Example: DBI-Galileon Duality

If W =1 then the integrability condition reduces to

0yG = 0 ie. G = G(X)
And the equation for F is solved by

F=F(X)=["dG(X")dX - 2XG

As a special example consider

1
v1—2X

G(X)=Ay= A\
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Example: DBI-(Galileon Duality

Tasinato 2016

\

¢+ A(1—7) 0¢ = D¢
at = " + Moo Y=,

~ ~
~

d
s [57Y Custa — 37dd6)*"(a(786))"
n=0

_ —1 e(dz)d " " X — ~ A 5O
S_/v ;Cn (dz)™"(d(709)) _ /7 'Y Cu(N)e(dz) (A (706))"

én()‘) — Z(_)‘)T d-ntr) Crn—r .



Coupling to Massless Gravity?

* So far we have only defined the duality for scalar fields
in Minkowski spacetime

* Since the duality is a field dependent diffeomorphism, a
naive covariantization (covariant Galileon/Horndeski)
will violate duality

* Solution appears to be to work in first order Einstein-
Cartan formulation where spin-connection is
independent



Coupling to Massless Gravity?

To see why, consider Minkowski spacetime in vierbein

notation
a

e? = dz“ G = Navelepdatdat
Under the (Minkowski) duality transformation

" = di" = dz" + d(G(¢, X)0"¢) = e + d(G(¢, X)0"9)

This looks like a local field redefinition of the vierbein!!!



(Generalisation with dynamical gravity

Define a Lorentz vector/diff scalar ¢ = €59, ¢
such that €a(1)a — d¢

X = — 512"

Define a Lorentz scalar/diff scalar

Define a spin-connection via a covariant derivative

Dw|®* = dP® + wP?



(Generalisation with dynamical gravity
X = —$nup0e@°

Then the duality transformation is a local field
redefinition on the scalar and vierbein of the form

~

e’ = e” + D|w| (G(¢, X)PY)

O = W(p, X)0* = X = W(s, X)*X



Condition for invertibility

Requiring that the inverse of the duality transformation is also a
duality transformation

et = & — D[w] (G(¢, X)®%) = é* — D[w] (G(cb, X)W (¢, X )‘1@“)

= & + D[@| (é(qB, X)c’fﬂ) .

Imposes that

0" =w®, G(¢, X) =—-G(¢, X)W (¢, X) ™"

Hence the spin-connection cannot remain the usual torsionless
one (first order formulation necessary!!) since it does not
transform when the vierbein does



Integrability Condition

Requiring that e q}a —d &

Leads to the same integrability condition we obtained in
Minkowski spacetime

Wde — 2W XdG — WGAX = d¢ + dF

Conclusion: Whenever there exists a duality transformation for a
scalar theory in Minkowski spacetime, we can couple it to
massless gravity and preserve the same symmetry.



Full Duality Transformations

Together with integrability condition




Covariant Action

In first order form (spin-connection is independent)

Duality transformations imply




Covariant Action

In first order form (spin-connection is independent)

Duality transformations

imply




Explicit Example

e.g. Standard cosmological theory (e.g. k-infation, k-essence)
s [v=a [*2Re+p06.0)]
— /e [%e%ﬁ[w] + %ee‘lp((b,X)]
Mlg’l a

1
= /Eabcd [TB Ae’ AR + 1 Cabede” A e’ A e N ep(o, X)]

Maps under the duality transformation to

5= [ |2 (e+ DY) Rla) + e (e+ DEIGEY) 51, 3)]



Conclusions (Old)

* Galileons emerge as decoupling limits of massive gravity and
bigravity theories

* GGalileon Duality maps two naive different (Galileon theories
into each other by means of a non-local field redefinition

* GGalileon Duality preserves S-matrix



Conclusions (New)

* GGalileon Duality can be generalised to any scalar field
theory in Minkowski spacetime provided a simple
integrability condition is met - Infinite free choice of duality
transformations

* Duality transformations map class of theories that lead to
second order equations of motion into each other

* Symmetry of Galileon theory is not important

* Every theory in Minkowsi that admits a duality can be
extended to a covariant theory in a simple way provided we
work in the first order Einstein-Cartan formalism

* Resulting theories are in general not equivalent to the
Horndeski/covariant (GGalileon theories.

* Covariant duality is a local field redefinition of the scalar




