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WHY MODIFY 
GRAVITY?



Why modify gravity?

Type I: UV Modifications: 
eg. Quantum Gravity, string theory, extra 

dimensions, branes, supergravity
At energies well below the scale of new physics     , 

gravitational effects are well incorporated 
in the language of Effective Field Theories

Addition of Higher Dimension, (generally higher derivative operators), no 
failure of well-posedness/ghosts etc as all such operators should be treated 

perturbatively (rules of EFT)
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Principle Motivation is Cosmological:
  

Dark Energy and Cosmological Constant

I: Old cosmological constant problem: 

Why is the universe not accelerating at a gigantic rate 
determined by the vacuum energy?

II: New cosmological constant problem: 

Assuming I is solved, what gives rise to the remaining vacuum 
energy or dark energy which leads to the acceleration we 

observe?

Type 2: IR Modifications: 



III: Because it allows us to put better constraints on Einstein 
gravity!

Why modify gravity (in the IR)?

D. Psaltis, Living Reviews

Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum 11
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Figure 1: A parameter space for quantifying the strength of a gravitational field. The x-axis measures the
potential ✏ ⌘ GM/rc2 and the y-axis measures the spacetime curvature ⇠ ⌘ GM/r3c2 of the gravitational
field at a radius r away from a central object of mass M . These two parameters provide two di↵erent
quantitative measures of the strength of the gravitational fields. The various curves, points, and legends
are described in the text.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2008-9

Potential

Curvature

e.g.  Weinberg’s nonlinear Quantum Mechanics- 
constructing to test linearity of QM

Gravity has only been tested over 
special ranges of scales and 
curvatures



UNIQUENESS OF GR



Why is General Relativity so special?



i.e. it exhibits 4 local symmetries -  
General Coordinate Transformations

Every theory can be written in a coordinate invariant way, but there is 
usually a preferred system of coordinates/frame of reference

- in GR there is no preferred system in the absence of matter
- in the presence of matter there is a preferred reference frame, 

e.g. the rest frame of the cosmic microwave background

xµ ! xµ(x0)

1. GR is Diffeomorphism Invariant



2. In GR Gravity is described by the 
curvature of spacetime

Einsteins equations take the form:

Curvature of 
spacetime  

Energy Momentum
 Density/

Gµ� = 8�G Tµ�
radius of curvature^2              1/energy density/



Every geometry is locally 
Minkowski - 

GR can be rewritten as spin-two 
perturbations around Minkowski

E.o.Ms for GR are Lorentz 
invariant to all orders

Essentially a different phrasing of the equivalence principle - 
ability to choice locally inertial frames

3. GR is locally Lorentz Invariant

gµ⌫(x) = ⌘µ⌫ + hµ⌫(x)
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4. GR is unique theory of a massless spin-
two field

Metric perturbations transform as massless fields of spin 2!!

There are only two physical polarizations 
of gravitational waves!

gµ� = �µ� + hµ�



Sketch of proof

Spin 2 field is encoded in a 10 component symmetric tensor

hµ⌫

But physical degrees of freedom of a massless spin 2 field are d.o.f. 
= 2

We need to subtract 8 = 2  x 4

This is achieved by introducing 4 local symmetries

Every symmetry removes one component since 1 is pure gauge and 
the other is fixed by associated first class constraint (Lagrangian 

counting)



Sketch of proof

Lorentz invariance demands that the 4 symmetries form a vector 
(there are only 2 possible distinct scalar symmetries) and so we are 

led to the unique possibility

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

We can call this linear Diff symmetry but its really just 4 U(1) 
symmetries, its sometimes called spin 2 gauge invariance



Quadratic action

Demanding that the action is local and starts at lowest order in 
derivatives (two), we are led to a unique quadratic action which 

respects linear diffs

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ
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Spin-2 Gauge invariance of kinetic term



Unique result

There are only two nonlinear extensions of the linear Diff 
symmetry, (assumption over number of derivatives)

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

1. Linear Diff -> Linear Dif

Most complete proof Wald 1986

2. Linear Diff -> Full Diffeomorphism

gµ⌫ = ⌘µ⌫ + hµ⌫ Metric emerges as derived concept

hµ⌫ ! hµ⌫ + ⇠!@!hµ⌫ + gµ!@⌫⇠
! + g!⌫@µ⇠

!



Punch Line

Massless Spin 2 = Symmetric tensor + Gauge Symmetry

Nonlinear Spin 2 = Metric + Diffeomorphism Invariance

Geometry!!!!



REVIEW OF MASSIVE 
GRAVITY/BIGRAVITY



What happens if we repeat this arguments 
starting with the assumption of a 

massive spin 2 field?  

i.e. suppose that the graviton is massive, are we 
inevitably led to the Einstein-Hilbert action 

(plus mass term)?

Basic Question
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A toy example, Massive spin-1 
Proca theory

Unitary gauge formulation for massive spin-1 particle

Canonical Analysis shows presence of second class constraint 
- can analyse this way but better to reformulate as a first class 

constraint - reintroduce broken gauge symmetry!



Stuckelberg picture

Easiest to understand in the Stuckelberg picture in which 
reintroduce gauge invariance by means of a field redefinition

Therefore number of degrees of freedom are 
2         +  1    

Aµ ! Aµ + @µ�

Aµ �

Massive theory is now gauge invariant
Aµ ! Aµ + @µ⇠ , � ! �� ⇠
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2
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Free massive spin 2

In this case we should Stuckelberg the linear Diff symmetry

There is a unique quadratic mass term

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

If we choose the massless kinetic term, Stuckelberg fields do not 
enter

hµ⌫ ! hµ⌫ + @µ�⌫ + @⌫�µ











What does massive gravity mean?
In SM, Electroweak symmetry       

is spontaneously broken by the VEV of the Higgs field

SU(2)⇥ U(1)Y ! U(1)EM

Result, W and Z bosons become massive
Would-be-Goldstone-mode in Higgs field  becomes 

Stuckelberg field which gives boson mass

e.g. for Abelian Higgs
� = (v + ⇢)ei⇡

Aµ ! Aµ + @µ� ⇢ ! ⇢+ �

Higgs Vev Higgs Boson Stuckelberg field



Symmetry Breaking Pattern

In Massive Gravity - Local Diffeomorphism Group and an 
additional global Poincare group is broken down the diagonal 

subgroup

In Bigravity - Two copies of local Diffeomorphism Group are 
broken down to a single copy of Diff group 

Diff(M)⇥Diff(M) ! Diff(M)diagonal

Diff(M)⇥ Poincare ! Poincarediagonal



Higgs for Gravity

� = (v + ⇢)ei⇡

Despite much blood, sweat and tears an explicit 
Higgs mechanism for gravity is not known

For Abelian Higgs this corresponds to integrating out the Higgs boson and 
working at energy scales lower that the mass of the Higgs boson

However if such a mechanism exists, we DO know how to write 
down the low energy effective theory in the spontaneously broken 

phase

E ⌧ m⇢

Stuckelberg formulation of massive vector bosons

Stuckelberg fieldHiggs Boson



Stuckelberg Formulation 
for Massive Gravity

Diffeomorphism invariance is spontaneously broken but 
maintained by introducing Stueckelberg fields

Vev of spin 2 Higgs field
defines a ‘reference metric’

gµ⌫(x)
Fµ⌫ = fAB(�)@µ�

A@⌫�
B

reference metric

�a = xa +
1

mMP
Aa +

1

⇤3
@a⇡ ⇤3 = m2MP

Stuckelberg 
fields

helicity-0 mode of graviton

helicity-1 mode of graviton

fµ⌫ = hÔµ⌫i

Dynamical Metric

de Rham, Gabadadze 2009
Arkani-Hamed et al 2002 



Helicity Zero mode = Galileon

only enters in the combination⇡(x)
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The helicity zero mode

⇧µ⌫ = @µ@⌫⇡(x)
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This is invariant under the 
global nonlinearly realized symmetry

⇡(x) ! ⇡(x) + c+ vµx
µ

⇧µ⌫ ! ⇧µ⌫







Discovering how to 
square root

Helicity zero mode enters reference metric squared
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To extract dominant helicity zero interactions we need 
to take a square root
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Hard          Massive Gravity

Det[1 + �K] =
dX
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Unique low energy EFT where the strong coupling scale is 

⇤3

⇤3 = (m2MP )
1/3

Characteristic 
Polynomials

Diff(M)⇥ Poincare ! Poincarediagonal

5 propagating degrees of freedom
5 polarizations of gravitational waves!!!!

de Rham, Gabadadze, AJT 2010

Double epsilon structure!!!!!



Hard Massless plus        Massive Gravity

Bigravity=
massless graviton (2 d.o.f.)
+ massive graviton (5 d.o.f.)

decoupling 
limit

Mf ! 1
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Diff(M)⇥Diff(M) ! Diff(M)diagonal



EMERGENCE OF 
GALILEONS



Universal Decoupling Limit: Galileon

At energies m ⌧ E ⌧ MPLanck

All Lorentz invariant Hard and Soft and Multi-graviton theories 
look like Galileon theories  (plus massless spin 2 plus Maxwell)
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where ⇤g is the covariant d’Alembertian and ⇤⌘ the Minkowski d’Alembertian. This pair
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continue to respect the Galileon symmetry (realized in the sense that ⇡ ! ⇡ + vµx
µ + c and

V
a
! V

a
� v

a
/m when perturbed around an arbitrary background). Indeed, as in the case

of the massive Galileon [27], the terms that violate the symmetry are purely quadratic, and

hence all tree level vertices and propagators naturally respect the symmetry. Alternative

gauge choices typically break the Galileon symmetry, but only through m/MPl suppressed

terms.

4.1.2 Wilsonian E↵ective action for Weakly Coupled Massive Gravity

Within the framework of approach 3, the general structure of a ‘single scale - single coupling’

tree level Lagrangian for weakly coupled massive gravity is [3]
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The form of the interactions in L1 and higher will be those needed to renormalize loops from

L0. We have included the possibility that the curvature corrections come in at the scale ⇤

since such terms will arise from the commutator of two covariant derivatives, however we

expect that those curvature corrections that relate to the helicity 2 sector, i.e. those present

in the absence of the mass term, will be suppressed by some higher scale, e.g. M2,
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Having in mind the hierarchy ⇤ ⌧ M , such interactions will be irrelevant to the following

considerations. An important point to recognize about an approach 3 UV completion is that
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Fasiello, AJT 1308.1647
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Dynamical metric I Dynamical metric II
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and perform the scaling or decoupling limit,

Mp → ∞ , Mf → ∞ , m → 0 (4.6)

while keeping

Λ3 = (m2Mp)
1
3 → constant and Mp/Mf constant . (4.7)

In addition, the scaling is done such that the β̂n are kept constant where βn = M2
p β̂n.

The resulting action in the Λ3 decoupling limit can be split into two contributions

lim
Mp→∞ ,Λ3 constant

Sbigravity = Shelicity−2/0 + Shelicity−1/0 (4.8)

where Shelicity−1/0 contains only interactions between the helicity-1 and helicity-0 de-
grees of freedom [76]5:
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Similarly Shelicity−2/0 contains the interactions of the helicity-2 and helicity-0 modes
and is given by
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5As in [76] we take the standard definitions of the Kronecker deltas: δµνρσabcd = εµνρσεabcd. More
generally we have δµνρabc = 1

1!
εµνρdεabcd and δµνab = 1

2!
εµνcdεabcd.
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where Êαβ
µν is the Lichnerowicz operator defined on a background Minkowski space-time

with the convention (Êh)µν = −1
2
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where we have used a short hand notation in which the indices of (η + Π) and η are
contracted between the pairs of Levi-Civita symbols ε in order.

In this representation the dependence of the action on vµν is nontrivial due to π
dependence in vµA[xa + Λ−3

3 ∂aπ](ηAν + ΠA
ν ) term. We can however undo this with a

coordinate transformation in the last term to write an equivalent representation:
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a)Ỹ µν

]

, (4.15)

where
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and where (∂Z)aν = ∂µZa(x) and the function Za(x) is defined via the implicit relation

Za(xb + Λ−3
3 ∂bπ(x)) = xa . (4.17)

The fact that we have performed the coordinate transformation in only the last term
might seem strange, however it is allowed because the integration variable is a dummy
variable. Essentially we are using the four dimensional version of the identities
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where Z(x) is a monotonic function satisfying Z(±∞) = ±∞.
To elucidate the meaning of this remember that the diff Stückelberg fields are

defined in the decoupling limit as Φa(x) = xa + Λ−3
3 ∂bπ(x), thus the relation (4.17) is

Za(Φb(x)) = xa , (4.19)

in other words the function Za is the inverse function, i.e. inverse coordinate transfor-
mation to Φa. The function Φa provides a map from the coordinates of the metric g
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3 ∂aπ](ηAν + ΠA
ν ) term. We can however undo this with a

coordinate transformation in the last term to write an equivalent representation:

Shelicity−2/0 =

∫

d4x

[

−
1

4
hµν Êαβ

µν hαβ −
1

4
vµν Êαβ

µν vαβ

+
Λ3

3

2
hµν(x)Xµν +

MpΛ3
3

2Mf
vµν(x

a)Ỹ µν

]

, (4.15)

where

Ỹ µν = −
1

2

4
∑

n=0

β̂n

(4− n)!(n− 1)!
εµ...εν...η(n−1)(∂Z)4−n , (4.16)

and where (∂Z)aν = ∂µZa(x) and the function Za(x) is defined via the implicit relation

Za(xb + Λ−3
3 ∂bπ(x)) = xa . (4.17)

The fact that we have performed the coordinate transformation in only the last term
might seem strange, however it is allowed because the integration variable is a dummy
variable. Essentially we are using the four dimensional version of the identities
∫

∞

−∞

dx (f(x) + h(x)) =

∫

∞

−∞

dxf(x) +

∫

∞

−∞

dxh(x) =

∫

∞

−∞

dxf(x) +

∫

∞

−∞

dZ h(Z)

=

∫

∞

−∞

dx

(

f(x) +
dZ(x)

dx
h(Z(x))

)

. (4.18)

where Z(x) is a monotonic function satisfying Z(±∞) = ±∞.
To elucidate the meaning of this remember that the diff Stückelberg fields are

defined in the decoupling limit as Φa(x) = xa + Λ−3
3 ∂bπ(x), thus the relation (4.17) is

Za(Φb(x)) = xa , (4.19)

in other words the function Za is the inverse function, i.e. inverse coordinate transfor-
mation to Φa. The function Φa provides a map from the coordinates of the metric g

– 18 –

and perform the scaling or decoupling limit,

Mp → ∞ , Mf → ∞ , m → 0 (4.6)

while keeping

Λ3 = (m2Mp)
1
3 → constant and Mp/Mf constant . (4.7)

In addition, the scaling is done such that the β̂n are kept constant where βn = M2
p β̂n.

The resulting action in the Λ3 decoupling limit can be split into two contributions

lim
Mp→∞ ,Λ3 constant

Sbigravity = Shelicity−2/0 + Shelicity−1/0 (4.8)

where Shelicity−1/0 contains only interactions between the helicity-1 and helicity-0 de-
grees of freedom [76]5:

Shelicity−1/0 = −
β̂1

4
δµνρσabcd

(

1

2
Ga

µω
b
νδ

c
ρδ

d
σ + (δ + Π)aµ[δ

b
νω

c
ρω

d
σ +

1

2
δbνδ

c
ρω

d
αω

α
σ]

)

−
β̂2

8
δµνρσabcd

(

2Ga
µ(δ + Π)bνω

c
ρδ

d
σ + (δ + Π)aµ(δ + Π)bν [ω

c
ρω

d
σ + δdσω

c
αω

α
ρ]
)

−
β̂3

24
δµνρσabcd

(

(δ + Π)aµ(δ + Π)bν(δ + Π)cρω
d
αω

α
σ + 3ωa

µG
b
ν(δ + Π)cρ(δ + Π)dσ

)

,

where

ωab =

∫

∞

0

du e−2ue−uΠa
a′

Ga′b′e
−uΠb′

b (4.9)

=
∑

n,m

(n+m)!

21+n+mn!m!
(−1)n+m (ΠnGΠm )ab ,

is the solution of

Gab = ∂aBb − ∂bBa = ωac(δ + Π)cb + (δ + Π)a
cωcb , (4.10)

Πab is defined as

Πab =
∂a∂bπ

Λ3
3

. (4.11)

Similarly Shelicity−2/0 contains the interactions of the helicity-2 and helicity-0 modes
and is given by

Shelicity−2/0 =

∫

d4x

[

−
1

4
hµν Êαβ

µν hαβ −
1

4
vµν Êαβ

µν vαβ

+
Λ3

3

2
hµν(x)Xµν +

MpΛ3
3

2Mf
vµA[x

a + Λ−3
3 ∂aπ](ηAν + ΠA

ν )Y
µν

]

, (4.12)

5As in [76] we take the standard definitions of the Kronecker deltas: δµνρσabcd = εµνρσεabcd. More
generally we have δµνρabc = 1

1!
εµνρdεabcd and δµνab = 1

2!
εµνcdεabcd.
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Fasiello, AJT 2013

Explicitly Decoupling limit for Bigravity

de Rham, Gabadadze 2009
gµ⌫ = ⌘µ⌫ +

1

MP
hµ⌫ fµ⌫ = ⌘µ⌫ +

1

MP
vµ⌫

massless helicity 2 massless helicity 0



Fasiello, AJT 2013

Post-diagonalization: Galileons
de Rham, Gabadadze 2009

S =

Z
d4x


�1

4
hµ⌫E↵�

µ⌫ h↵� � 1

4
vµ⌫E↵�

µ⌫ v↵�

�
+ SGalileon + Smattercoupling

SGalileon =
4X

n=0

⇡ cn Un(K) Det[1 + �K] =
dX

n=0

�nUn(K)

Kµ
⌫ = @µ@⌫⇡

Novel feature, matter has `disformal’ couplings

Smatter coupling =

Z
d4x

1

MP
(⇡T + @µ⇡@⌫⇡T

µ⌫ + . . . )



GALILEON DUALITY 
(OLD STORY)



There are two ways to introduce Stuckelberg fields!

OR
Dynamical metric I Dynamical metric II

Fµ⌫ = fAB(�)@µ�
A@⌫�

B
Dynamical metric I Dynamical metric II

gµ⌫(x)

x̃A = �A(x) = xA + @A⇡(x)

fAB(x̃)G̃AB(x̃) = gµ⌫(Z)@AZ
µ@BZ

⌫

Fasiello, AJT 1308.1647

xµ = Zµ(x̃) = x̃µ + @µ⇡̃(x̃)
Galileon 
Duality!!!!!

=



Dual Galileons fields

For every Galileon field ⇡(x)
define the Dual Galileon field via the implicit field 

redefinition

`Galileon Duality’ - de Rham, Matteo Fasiello, AJT 2013
 Curtright and Fairlie arXiv:1212.6972

x̃A = �A(x) = xA + @A⇡(x)

xµ = Zµ(x̃) = x̃µ + @µ⇢(x̃)

⇡(x) = �⇢(x̃)� 1

⇤3
(@̃⇢(x̃))2 ⇢(x̃) = �⇡(x) +

1

⇤3
(@⇡(x))2



Dual Galileons fields

x̃A = �A(x) = xA + @A⇡(x)

xµ = Zµ(x̃) = x̃µ + @µ⇢(x̃)

Explicitly this is 

⇢(x) = �⇡(x) +
1

2
(@⇡)2 � 1

2
@a⇡@b⇡@a@b⇡ + infinite number of terms . . .

or for spherical symmetry
⇢(r) = �⇡(r) +

1X

n=2

(�1)n

n!
@n�2
r ((@r⇡)

n)

⇡(x) = �⇢(x̃)� 1

⇤3
(@̃⇢(x̃))2 ⇢(x̃) = �⇡(x) +

1

⇤3
(@⇡(x))2



Dual Galileons Lagrangians

For every Galileon field Lagrangian in D spacetime dimensions  

admits a dual formulation as a Galileon

L(⇡) = c2L2(⇡) + c3L3(⇡) + c4L4(⇡) + . . .

L(⇢) = p2L2(⇢) + p3L3(⇢) + p4L4(⇢) + . . .

pn =
1

n

D+1X

k=2

(�1)kck
k(d� k + 1)!

(n� k)!(d� n+ 1)!

with distinct coefficients

Galileon operators: Ln(⇡) = ⇡✏✏(@@⇡)n�1⌘D�n+1



Galileon Symmetry is Translation 
Symmetry (for the other metrics 

coordinates)
�A = xA + @A⇡

⇡(x) ! ⇡(x) + c+ vµx
µ

�A ! �A + vA

Galileon 
transformation

Translation in          !

Diff(M) Stuckelberg Galileon

+

�A

Dual Formulation

xµ ! xµ + uµ⇢(x̃) ! ⇢(x̃) + uµx̃
µ



Dual of a Free theory

A free theory in Minkowski spacetime which is a causal theory 
with an analytic S-matrix with no strong coupling issues and is 

UV-complete is dual to a quintic Galileon theory.

L = �1

2
(@⇡)2 ⌘ �1

2
(@⇢)2 � 1

6
L3(⇢)�

1

8
L4(⇢)�

1

30
L5(⇢)

Field redefinitions do NOT change physics - even at 
quantum level



Duality works with Matter!
Any local coupling to matter maps to a local coupling to 

matter in the dual theory

is dual to

Smatter =

Z
d4x

✓
g⇡(x)�(x)� 1

2
(@�)2 � 1

2
m2�2

◆

Smatter =

Z
d4x

p
�G

✓
�g

✓
⇢(x) +

1

⇤3
(@⇢)2

◆
⇣(x)� 1

2
Gµ⌫(@µ⇣@⌫⇣)�

1

2
m2⇣2

◆

Example

where

⇣(x̃) = �(x)

Gµ⌫ = ⌘↵�(⌘µ↵ + ⌃µ↵)(⌘⌫� + ⌃⌫�)

⌃µ⌫ =
1

⇤3
@µ@⌫⇢



GALILEON DUALITY 
(NEW STORY)



Differential Geometry shorthand

Introduce shorthand

Given ωX = →εωϑε
ω
ωϑ, integrating by parts we have

ωS3 =

∫
ddx ωϑ

[
d∑

n=1

bn ε
ω
(
εωϑϖϖϱ

d→n+1(εεϑ)n→1
)
+

d∑

n=1

bn(n→ 1)ϖϖ(εεX)ϱd→n+1(εεϑ)n→2 + c0ϖϖϱ
d

]
.

(2.11)

Although not immediately clear, all 3rd order derivatives cancel due to the following identity

[2] (see appendix A)

ε
ω
(
εωϑϖϖϱ

d→n+1(εεϑ)n→1
)
+ (n→ 1)ϖϖ(εεX)ϱd→n+1(εεϑ)n→2 = (d→ n+ 1)ϖϖϱd→n(εεϑ)n .

(2.12)

Hence
ωS3

ωϑ(x)
=

d∑

n=1

bn(d→ n+ 1)ϖϖϱd→n(εεϑ)n + c0ϖϖϱ
d
, (2.13)

so that we may identify bn(d→ n+ 1) = cn for n ↑ 1.

As a final expression, splitting (εεϑ)n→1 = (εεϑ)n→2(εεϑ) for n ↑ 2 and integrating by

parts we have

S4 =

∫
ddx

[
→

d∑

n=2

bn ϖϖ(εϑεX)ϱd→n+1(εεϑ)n→2 + (b1X + c0ϑ)ϖϖϱ
d

]
. (2.14)

We shall see that all of the di!erent versions naturally emerge when we consider generaliza-

tions.

2.1 Di!erential form notation

The double epsilon structure central to the above arguments, is familiar in the Einstein-

Cartan formulation of gravity. However, in that case, the first index is a di!eomorphism

index, and the second is a local Lorentz index, e.g. in d = 4

↓
→gR =

1

2
ϖ
µ1µ2µ3µ4ϖa1a2a3a4e

a1
µ1
e
a2
µ2
R

a3a4
µ3µ4

. (2.15)

In the decoupling limit MPl ↔ ↗ the di!eomorphism symmetry is replaced by a global

Poincaré symmetry of the background Minkowski spacetime, whose vector indices can be

identified with the local Lorentz ones (since e
a
µ ↔ ωaµ), together with linear spin-2 gauge

invariance.

Anticipating the connection with gravitational theories it proves to be convenient to

reexpress the Galileon action in terms of di!erential forms. For this we use the analogous

shorthand notation for forms

ϖABC.... = ϖa1a2a2...A
a1 ↘B

a2 ↘ C
a3 . . . . (2.16)

with one-forms Aa related to the previous two tensors as Aa = Aµadxµ. In form notation the

metric is replaced by

ϱµadx
µ = dxa . (2.17)
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For Lorentz index valued one-forms
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ω
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)
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n=1

bn(n→ 1)ϖϖ(εεX)ϱd→n+1(εεϑ)n→2 + c0ϖϖϱ
d

]
.

(2.11)

Although not immediately clear, all 3rd order derivatives cancel due to the following identity

[2] (see appendix A)

ε
ω
(
εωϑϖϖϱ

d→n+1(εεϑ)n→1
)
+ (n→ 1)ϖϖ(εεX)ϱd→n+1(εεϑ)n→2 = (d→ n+ 1)ϖϖϱd→n(εεϑ)n .
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Hence
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ωϑ(x)
=
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d
, (2.13)

so that we may identify bn(d→ n+ 1) = cn for n ↑ 1.

As a final expression, splitting (εεϑ)n→1 = (εεϑ)n→2(εεϑ) for n ↑ 2 and integrating by

parts we have
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ddx
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→
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d

]
. (2.14)

We shall see that all of the di!erent versions naturally emerge when we consider generaliza-

tions.

2.1 Di!erential form notation

The double epsilon structure central to the above arguments, is familiar in the Einstein-

Cartan formulation of gravity. However, in that case, the first index is a di!eomorphism

index, and the second is a local Lorentz index, e.g. in d = 4

↓
→gR =

1

2
ϖ
µ1µ2µ3µ4ϖa1a2a3a4e

a1
µ1
e
a2
µ2
R

a3a4
µ3µ4

. (2.15)

In the decoupling limit MPl ↔ ↗ the di!eomorphism symmetry is replaced by a global

Poincaré symmetry of the background Minkowski spacetime, whose vector indices can be

identified with the local Lorentz ones (since e
a
µ ↔ ωaµ), together with linear spin-2 gauge

invariance.

Anticipating the connection with gravitational theories it proves to be convenient to

reexpress the Galileon action in terms of di!erential forms. For this we use the analogous

shorthand notation for forms

ϖABC.... = ϖa1a2a2...A
a1 ↘B

a2 ↘ C
a3 . . . . (2.16)

with one-forms Aa related to the previous two tensors as Aa = Aµadxµ. In form notation the

metric is replaced by

ϱµadx
µ = dxa . (2.17)
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Given ωX = →εωϑε
ω
ωϑ, integrating by parts we have

ωS3 =

∫
ddx ωϑ

[
d∑

n=1

bn ε
ω
(
εωϑϖϖϱ

d→n+1(εεϑ)n→1
)
+

d∑

n=1

bn(n→ 1)ϖϖ(εεX)ϱd→n+1(εεϑ)n→2 + c0ϖϖϱ
d

]
.

(2.11)

Although not immediately clear, all 3rd order derivatives cancel due to the following identity

[2] (see appendix A)

ε
ω
(
εωϑϖϖϱ

d→n+1(εεϑ)n→1
)
+ (n→ 1)ϖϖ(εεX)ϱd→n+1(εεϑ)n→2 = (d→ n+ 1)ϖϖϱd→n(εεϑ)n .

(2.12)

Hence
ωS3

ωϑ(x)
=

d∑

n=1

bn(d→ n+ 1)ϖϖϱd→n(εεϑ)n + c0ϖϖϱ
d
, (2.13)

so that we may identify bn(d→ n+ 1) = cn for n ↑ 1.

As a final expression, splitting (εεϑ)n→1 = (εεϑ)n→2(εεϑ) for n ↑ 2 and integrating by

parts we have

S4 =

∫
ddx

[
→

d∑

n=2

bn ϖϖ(εϑεX)ϱd→n+1(εεϑ)n→2 + (b1X + c0ϑ)ϖϖϱ
d

]
. (2.14)

We shall see that all of the di!erent versions naturally emerge when we consider generaliza-

tions.

2.1 Di!erential form notation

The double epsilon structure central to the above arguments, is familiar in the Einstein-

Cartan formulation of gravity. However, in that case, the first index is a di!eomorphism

index, and the second is a local Lorentz index, e.g. in d = 4

↓
→gR =

1

2
ϖ
µ1µ2µ3µ4ϖa1a2a3a4e

a1
µ1
e
a2
µ2
R

a3a4
µ3µ4

. (2.15)

In the decoupling limit MPl ↔ ↗ the di!eomorphism symmetry is replaced by a global

Poincaré symmetry of the background Minkowski spacetime, whose vector indices can be

identified with the local Lorentz ones (since e
a
µ ↔ ωaµ), together with linear spin-2 gauge

invariance.

Anticipating the connection with gravitational theories it proves to be convenient to

reexpress the Galileon action in terms of di!erential forms. For this we use the analogous

shorthand notation for forms

ϖABC.... = ϖa1a2a2...A
a1 ↘B

a2 ↘ C
a3 . . . . (2.16)

with one-forms Aa related to the previous two tensors as Aa = Aµadxµ. In form notation the

metric is replaced by

ϱµadx
µ = dxa . (2.17)
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and ωωε is replaced by

ωµωaεdx
µ = dωaε . (2.18)

The Galileon action (2.1) can now be written in this shorthand as

S1 =

∫ [
d∑

n=0

cnε ϑ(dx)d→n(dωε)n
]
, (2.19)

so that one ϑ is explicit, acting on the Lorentz indices, and one is implicit in the wedge

products.

3 Review of Galileon Duality

The Galileon duality transformation was observed to arise in [3, 4] in decoupling limit of mas-

sive gravity and bigravity theories as a remnant of the underlying di!eomorphism invariance

that arises in the Stückelberg formulation. Remarkably, it had previously been considered

in [5] from the di!erent perspective of Legendre transformations in the formulation of the

action. Subsequently it was interpreted from the perspective of the coset construction for

non-linearly realized symmetries [6].

At a basic level, the duality is a one-parameter non-local field redefinition that can be

viewed as a combination of a local field redefinition and a field dependent di!eomorphism

ε̃(x̃) = ε(x) +
1

2
ϖωµε(x)ω

µ
ε(x) , (3.1)

x̃
µ = x

µ + ϖω
µ
ε(x) . (3.2)

Since

ωω ε̃ = ωωε(x) + ϖωωωµε(x)ω
µ
ε(x) =

ωx̃
µ

ωxω
ωµε(x) , (3.3)

we infer that

ω̃µε̃ = ωµε , (3.4)

and hence the duality is invertible in the sense ϖ → ↑ϖ, ε → ε̃

ε(x̃) = ε̃(x)↑ 1

2
ϖω̃µε̃(x)ω̃

µ
ε̃(x) , (3.5)

x
µ = x̃

µ ↑ ϖω̃
µ
ε̃(x) . (3.6)

What is most remarkable about the transformation is that ωµε̃ is a vector under global

Poincaré transformations, but transforms as scalar under the di!eomorphism of the duality.

This is consistent with its massive gravity origin where ε(x) arises from the Stückelberg fields

ϱ
a which are scalars under di!eomorphisms and vectors under a global Lorentz symmetry.

It is a general theorem in QFT that the S-matrix is invariant under local field redefini-

tions [7–9], or equivalently that the scattering amplitudes can be constructed from any local

operator which is a function of the original field [10, 11] provided that the local operator
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Galileon Action

and ωωε is replaced by

ωµωaεdx
µ = dωaε . (2.18)

The Galileon action (2.1) can now be written in this shorthand as

S1 =

∫ [
d∑

n=0

cnε ϑ(dx)d→n(dωε)n
]
, (2.19)

so that one ϑ is explicit, acting on the Lorentz indices, and one is implicit in the wedge

products.

3 Review of Galileon Duality

The Galileon duality transformation was observed to arise in [3, 4] in decoupling limit of mas-

sive gravity and bigravity theories as a remnant of the underlying di!eomorphism invariance

that arises in the Stückelberg formulation. Remarkably, it had previously been considered

in [5] from the di!erent perspective of Legendre transformations in the formulation of the

action. Subsequently it was interpreted from the perspective of the coset construction for

non-linearly realized symmetries [6].

At a basic level, the duality is a one-parameter non-local field redefinition that can be

viewed as a combination of a local field redefinition and a field dependent di!eomorphism

ε̃(x̃) = ε(x) +
1

2
ϖωµε(x)ω

µ
ε(x) , (3.1)

x̃
µ = x

µ + ϖω
µ
ε(x) . (3.2)

Since

ωω ε̃ = ωωε(x) + ϖωωωµε(x)ω
µ
ε(x) =

ωx̃
µ

ωxω
ωµε(x) , (3.3)

we infer that

ω̃µε̃ = ωµε , (3.4)

and hence the duality is invertible in the sense ϖ → ↑ϖ, ε → ε̃

ε(x̃) = ε̃(x)↑ 1

2
ϖω̃µε̃(x)ω̃

µ
ε̃(x) , (3.5)

x
µ = x̃

µ ↑ ϖω̃
µ
ε̃(x) . (3.6)

What is most remarkable about the transformation is that ωµε̃ is a vector under global

Poincaré transformations, but transforms as scalar under the di!eomorphism of the duality.

This is consistent with its massive gravity origin where ε(x) arises from the Stückelberg fields

ϱ
a which are scalars under di!eomorphisms and vectors under a global Lorentz symmetry.

It is a general theorem in QFT that the S-matrix is invariant under local field redefini-

tions [7–9], or equivalently that the scattering amplitudes can be constructed from any local

operator which is a function of the original field [10, 11] provided that the local operator
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In this shorthand notation, the Galileon action in
 d spacetime dimensions is 

Principle advantage: Although defining a theory on Minkowski, 
notation is independent of coordinate system and hence 

accommodates field dependent coordinate transformations



Galileon Duality (again)

and ωωε is replaced by

ωµωaεdx
µ = dωaε . (2.18)

The Galileon action (2.1) can now be written in this shorthand as

S1 =

∫ [
d∑

n=0

cnε ϑ(dx)d→n(dωε)n
]
, (2.19)

so that one ϑ is explicit, acting on the Lorentz indices, and one is implicit in the wedge

products.

3 Review of Galileon Duality

The Galileon duality transformation was observed to arise in [3, 4] in decoupling limit of mas-

sive gravity and bigravity theories as a remnant of the underlying di!eomorphism invariance

that arises in the Stückelberg formulation. Remarkably, it had previously been considered

in [5] from the di!erent perspective of Legendre transformations in the formulation of the

action. Subsequently it was interpreted from the perspective of the coset construction for

non-linearly realized symmetries [6].

At a basic level, the duality is a one-parameter non-local field redefinition that can be

viewed as a combination of a local field redefinition and a field dependent di!eomorphism
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µ
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µ = x

µ + ϖω
µ
ε(x) . (3.2)

Since
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µ
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ωx̃
µ

ωxω
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we infer that
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µ
ε̃(x) , (3.5)

x
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µ ↑ ϖω̃
µ
ε̃(x) . (3.6)

What is most remarkable about the transformation is that ωµε̃ is a vector under global

Poincaré transformations, but transforms as scalar under the di!eomorphism of the duality.

This is consistent with its massive gravity origin where ε(x) arises from the Stückelberg fields

ϱ
a which are scalars under di!eomorphisms and vectors under a global Lorentz symmetry.

It is a general theorem in QFT that the S-matrix is invariant under local field redefini-

tions [7–9], or equivalently that the scattering amplitudes can be constructed from any local

operator which is a function of the original field [10, 11] provided that the local operator
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generates single particle states when applied to the vacuum1. By contrast non-local field re-
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1
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µ
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ω(x) is a local operator and to
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µ
ω(x) . (3.8)
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Defining Ô(x) as the composite operator associated classically with ϖµω(x)ϖµ
ω(x), so

that the operator deformation is

εω̂(x) = εϑÔ(x) , (3.9)
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↑p|(f(x), Ô(x))x0 |”↓ = 0 , (3.10)

where f(x) is a solution of the free field equations of motion, and (f, g)x0 is the associated
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. (3.11)

1For example, at tree level ω(x)+εω2(x) is an acceptable local field, but ω2(x) is not as it clearly does not

generate single particle states.
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We have here used the shorthand notation for two 2-tensors Aµω , Bµω

ωωA
d→n

B
n := ω

µ1...µdω
ω1...ωdAµ1ω1 . . . Aµd→nωd→nBµd→n+1ωd→n+1 . . . Bµdωd . (2.2)

with ω the Levi-Civita symbols and in the present case Aµω = εµω , Bµω = ϑµϑωϖ. The virtue

of the doubled ω structure us that these expressions are symmetric under interchange of any

elements

ωωA
d→n

B
n = ωωB

n
A

d→n = ωωAB
n
A

d→n→1
. . . etc. . (2.3)

This can be generalized to additional tensors, e.g.

ωωA
d→n→m

B
n
C

m := (2.4)

ω
µ1...µdω

ω1...ωdAµ1ω1 . . . Aµd→n→mωd→n→mBµd→n→m+1ωd→n→m+1 . . . Bµd→mωd→mCµd→m+1ωd→m+1 . . . Cµd .

The term with n = 0 in (2.1) is simply a tadpole term in the Lagrangian ϖ. It is sometimes

neglected, but it contributes to the equations of motion in a manner invariant under the

Galileon symmetry.

Varying the action (2.1) gives

ϱS1 =
d∑

n=0

∫
ddx

[
cnϱϖ ωωε

d→n(ϑϑϖ)n + ncnϖωωε
d→n(ϑϑϖ)n→1

ϑϑϱϖ

]
, (2.5)

which on twice integration by parts and using the antisymmetry properties of the double ω

structure gives

ϱS1 =
d∑

n=0

∫
ddx

[
(1 + n)cnϱϖ ωωε

d→n(ϑϑϖ)n
]
, (2.6)

hence
ϱS1

ϱϖ(x)
=

d∑

n=0

(1 + n)cn ωωε
d→n(ϑϑϖ(x))n . (2.7)

A second form of the same action is

S2 =

∫
ddx

[
→

d∑

n=1

cn ωω(ϑϖϑϖ)ε
d→n(ϑϑϖ)n→1 + c0ϖωωε

d

]
. (2.8)

To obtain this, we split (ϑϑϖ)n = (ϑϑϖ)n→1(ϑϑϖ) for n ↑ 1 and the integrate by parts once

from the last term. A third form of the action which is in fact more commonly used is

S3 =

∫
ddx

[
d∑

n=1

bnXωωε
d→n+1(ϑϑϖ)n→1 + c0ϖωωε

d

]
. (2.9)

where X = →1
2ϑµϖϑ

µ
ϖ. To demonstrate equivalence it is easiest to consider its variation

ϱS3 =

∫
ddx

[
d∑

n=1

bn ϱXωωε
d→n+1(ϑϑϖ)n→1 +

d∑

n=1

bn(n→ 1)Xωωε
d→n+1(ϑϑϖ)n→2(ϑϑϱϖ)

+c0ϱϖωωε
d
]
. (2.10)
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Generalisation to Generic Scalar 
Theories (in Minkowski)

in the coset interpretation [6]. In this section we shall see however, that the global symmetry

plays no role.

Consider now a generic scalar field ω(x) in Minkiwski spacetime with no special properties

other than transforming as a scalar under Poincaré. We shall again focus for simplicity on

the most general interactions that lead to second-order equations of motion, not because the

restriction to these is allowed by any EFT principle, but simply that they can be written

down in closed form and inevitable dominate the long wavelength dynamics.

The key di!erence with the pure Galileons is that the coe”cients in the previous formula-

tion can now be promoted to arbitrary functions of ω and the kinetic term X = →1
2(εω)

2. In

addition, to maintain complete generality at the price of some redundancy we should consider

linear combinations of S1 through S4. The most general action for a single scalar that leads

to second-order equations of motion is then

S =

∫ 


d∑

n=0

1∑

p,q=0

Fnpq(ω, X)ϑ(dx)d→n→p→q(dεω)n(dωεω)p(dXεω)q



 . (4.1)

Note that p, q cannot be greater than unity as a term such as ϑϑ(dωεω)2 . . . vanishes by virtue

of the antisymmetry of the Levi-Civita symbols.

The generalization of the duality is a transformation of the fields and coordinates that

does not introduce higher derivatives. We shall also assume Poincaré invariance is manifest

in which case the transformation of the coordinates must be of the form

x̃
µ = x

µ +G(ω, X)εµ
ω . (4.2)

The possibility of a term linear in ε
µ
X is excluded by the requirement that the coe”cient

functions only depend on ω and X and not higher derivatives of X. The transformation of

the one-form

dx̃ = dx+G(dεω) +G,ω(dωεω) +G,X(dXεω) . (4.3)

only introduces terms already present in (4.1), which is crucial for the subsequent arguments.

The field itself transforms as

ω̃ = ω+ F (ω, X) , (4.4)

so that

dω̃ = dω+ F,ωdω+ F,XdX . (4.5)

The final requirement is that the derivatives admit a simple transformation

ε̃µω̃ = W (ω, X)εµω , (4.6)

so that

X̃ = →1

2
(ε̃ω̃)2 = W (ω, X)2X . (4.7)

– 7 –
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The possibility of a term linear in ε
µ
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It is then evident that any function of ω and X can be rewritten as a function of ω̃ and X̃.

In addition,

dω̃ε̃ω̃ = W (ω, X) (dωεω+ F,ωdωεω+ F,XdXεω) , (4.8)

which again shows that the transformation only introduces terms already present in (4.1).

Furthermore, transformation is invertible and the inverse has the same functional form

ω = ω̃→ F (ω, X) = ω̃+ F̃ (ω̃, X̃) , (4.9)

εµω =
1

W (ω, X)
ε̃µω̃ = W̃ (ω̃, X̃)ε̃µω̃ , (4.10)

x
µ = x̃

µ →G(ω, X)εµ
ω = x̃

µ → G(ω, X)

W (ω, X)
ε̃
µ
ω̃ = x̃

µ + G̃(ω̃, X̃)ε̃µ
ω̃ . (4.11)

This would not have been the case if we had for example allowed in (4.6) term of the form

εµX. Given that

dX̃ = W
2dX + 2WW,XXdX + 2WW,ωXdω , (4.12)

the specific combination

(dX̃ε̃ω̃) = W
3(dXεω) + 2W 2

W,XX(dXεω) + 2W 2
W,ωX(dωεω) (4.13)

which again clearly preserves the form of the action (4.1).

4.1 Integrability conditions

In the above transformations F,G,W are not completely free functions. Consistency of (4.5),

(4.6), (4.2) requires

dω̃ = ε̃µω̃(x̃)dx̃
µ (4.14)

which is the non-trivial di!erential requirement

Wdω→ 2WXdG→WGdX = dω+ dF . (4.15)

Since W , F and G are functions of only ω and X this leads to a system of two-dimensional

di!erential equations.

Let us consider an infinitessimal transformation for which W = 1+ϑϖ, G = ϑg, F = ϑf ,

then to first-order in ϑ we have

ϖdω→ 2Xdg → gdX = df . (4.16)

which is equivalent to

df → = d(f + 2Xg) = ϖdω+ gdX . (4.17)

The integrability condition for their to exist an f
→ is then

εXϖ = εωg . (4.18)
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It is then evident that any function of ω and X can be rewritten as a function of ω̃ and X̃.

In addition,

dω̃ε̃ω̃ = W (ω, X) (dωεω+ F,ωdωεω+ F,XdXεω) , (4.8)

which again shows that the transformation only introduces terms already present in (4.1).

Furthermore, transformation is invertible and the inverse has the same functional form

ω = ω̃→ F (ω, X) = ω̃+ F̃ (ω̃, X̃) , (4.9)

εµω =
1

W (ω, X)
ε̃µω̃ = W̃ (ω̃, X̃)ε̃µω̃ , (4.10)

x
µ = x̃

µ →G(ω, X)εµ
ω = x̃

µ → G(ω, X)

W (ω, X)
ε̃
µ
ω̃ = x̃

µ + G̃(ω̃, X̃)ε̃µ
ω̃ . (4.11)

This would not have been the case if we had for example allowed in (4.6) term of the form

εµX. Given that

dX̃ = W
2dX + 2WW,XXdX + 2WW,ωXdω , (4.12)

the specific combination

(dX̃ε̃ω̃) = W
3(dXεω) + 2W 2

W,XX(dXεω) + 2W 2
W,ωX(dωεω) (4.13)

which again clearly preserves the form of the action (4.1).

4.1 Integrability conditions

In the above transformations F,G,W are not completely free functions. Consistency of (4.5),

(4.6), (4.2) requires

dω̃ = ε̃µω̃(x̃)dx̃
µ (4.14)

which is the non-trivial di!erential requirement

Wdω→ 2WXdG→WGdX = dω+ dF . (4.15)

Since W , F and G are functions of only ω and X this leads to a system of two-dimensional

di!erential equations.

Let us consider an infinitessimal transformation for which W = 1+ϑϖ, G = ϑg, F = ϑf ,

then to first-order in ϑ we have

ϖdω→ 2Xdg → gdX = df . (4.16)

which is equivalent to

df → = d(f + 2Xg) = ϖdω+ gdX . (4.17)

The integrability condition for their to exist an f
→ is then

εXϖ = εωg . (4.18)
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Consistency of the transformations

Imposes an integrability condition of the naively 3 free 
functions W,G,F

This leads to a system of two dimensional differential equations - they 
admit a solution only if the following integrability condition is satisfied

which can be solved as

ω(ε, X) = ω0(ε) +

∫ X

0
dX →

ϑωg(ε, X
→) , (4.19)

with the integral taken at constant ε. Then f is given by

f(ε, X) = f0 +

∫ ω

0
dε→

ω0(ε
→) +

∫ X

0
dX →

g(ε, X →) . (4.20)

Now f0 is just a constant shift of the field, and
∫ ω
0 dε→

ω0(ε→) is just a standard local field

redefinition. Only the last term is genuinely non-trivial since it mixes the field and the

kinetic term together. Choosing for simplicity then f0 = ω0(ε) = 0, the see that the real

content of the generalized duality is a free function g(ε, X) from which

ω(ε, X) =

∫ X

0
dX →

ϑωg(ε, X
→) , f(ε, X) =

∫ X

0
dX →

g(ε, X →) . (4.21)

Similarly on the non-linear theory we have

d(F + 2WXG) = Wdε+WGdX + 2dWXG . (4.22)

We may regard G as a free function to be specified. W is then fixed by the integrability

condition

d(Wdε+WGdX + 2dWXG) = 0 , (4.23)

which in turn fixes F + 2WXG and hence F . In more detail, the integrability condition is

ϑXW + 2ϑωW (G+XϑXG) = ϑω(WG) + 2ϑXWXϑωG . (4.24)

Written in terms of the perturbative variables this is

ϑXω = ϑωg + ϖ (ϑω(ωg) + 2ϑXωXϑωg → 2ϑωω(g +XϑXg)) . (4.25)

As we have seen the linearized version of this equation is easily solved, and it is similarly

straightforward to solve this equation perturbatively to any order in ϖ by iterating this equa-

tion. We can also solve the system by first specifying W/ω and finding an iterative solution

for G/g by reading the equation as

ϑωg = ϑXω → ϖ (ϑω(ωg) + 2ϑXωXϑωg → 2ϑωω(g +XϑXg)) . (4.26)

4.2 Example: DBI-Galileon Duality

A simple exact solution to the integrability condition (4.24) is obtained by imposing W = 1

(ω = 0), since then the condition reduces to

ϑωG = 0 , (4.27)
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Recipe

in the coset interpretation [6]. In this section we shall see however, that the global symmetry

plays no role.

Consider now a generic scalar field ω(x) in Minkiwski spacetime with no special properties

other than transforming as a scalar under Poincaré. We shall again focus for simplicity on

the most general interactions that lead to second-order equations of motion, not because the

restriction to these is allowed by any EFT principle, but simply that they can be written

down in closed form and inevitable dominate the long wavelength dynamics.

The key di!erence with the pure Galileons is that the coe”cients in the previous formula-

tion can now be promoted to arbitrary functions of ω and the kinetic term X = →1
2(εω)

2. In

addition, to maintain complete generality at the price of some redundancy we should consider

linear combinations of S1 through S4. The most general action for a single scalar that leads

to second-order equations of motion is then

S =

∫ 


d∑

n=0

1∑

p,q=0

Fnpq(ω, X)ϑ(dx)d→n→p→q(dεω)n(dωεω)p(dXεω)q



 . (4.1)

Note that p, q cannot be greater than unity as a term such as ϑϑ(dωεω)2 . . . vanishes by virtue

of the antisymmetry of the Levi-Civita symbols.

The generalization of the duality is a transformation of the fields and coordinates that

does not introduce higher derivatives. We shall also assume Poincaré invariance is manifest

in which case the transformation of the coordinates must be of the form

x̃
µ = x

µ +G(ω, X)εµ
ω . (4.2)

The possibility of a term linear in ε
µ
X is excluded by the requirement that the coe”cient

functions only depend on ω and X and not higher derivatives of X. The transformation of

the one-form

dx̃ = dx+G(dεω) +G,ω(dωεω) +G,X(dXεω) . (4.3)

only introduces terms already present in (4.1), which is crucial for the subsequent arguments.

The field itself transforms as

ω̃ = ω+ F (ω, X) , (4.4)

so that

dω̃ = dω+ F,ωdω+ F,XdX . (4.5)

The final requirement is that the derivatives admit a simple transformation

ε̃µω̃ = W (ω, X)εµω , (4.6)

so that

X̃ = →1

2
(ε̃ω̃)2 = W (ω, X)2X . (4.7)
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in which case the transformation of the coordinates must be of the form

x̃
µ = x

µ +G(ω, X)εµ
ω . (4.2)

The possibility of a term linear in ε
µ
X is excluded by the requirement that the coe”cient

functions only depend on ω and X and not higher derivatives of X. The transformation of

the one-form

dx̃ = dx+G(dεω) +G,ω(dωεω) +G,X(dXεω) . (4.3)

only introduces terms already present in (4.1), which is crucial for the subsequent arguments.

The field itself transforms as

ω̃ = ω+ F (ω, X) , (4.4)

so that

dω̃ = dω+ F,ωdω+ F,XdX . (4.5)

The final requirement is that the derivatives admit a simple transformation

ε̃µω̃ = W (ω, X)εµω , (4.6)

so that

X̃ = →1

2
(ε̃ω̃)2 = W (ω, X)2X . (4.7)

– 7 –

in the coset interpretation [6]. In this section we shall see however, that the global symmetry

plays no role.

Consider now a generic scalar field ω(x) in Minkiwski spacetime with no special properties

other than transforming as a scalar under Poincaré. We shall again focus for simplicity on
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Duality Transformation

1. Specify G
2. Solve integrability condition for W 

3. Solve equation for F

which can be solved as

ω(ε, X) = ω0(ε) +

∫ X

0
dX →

ϑωg(ε, X
→) , (4.19)

with the integral taken at constant ε. Then f is given by

f(ε, X) = f0 +

∫ ω

0
dε→

ω0(ε
→) +

∫ X

0
dX →

g(ε, X →) . (4.20)

Now f0 is just a constant shift of the field, and
∫ ω
0 dε→

ω0(ε→) is just a standard local field

redefinition. Only the last term is genuinely non-trivial since it mixes the field and the

kinetic term together. Choosing for simplicity then f0 = ω0(ε) = 0, the see that the real

content of the generalized duality is a free function g(ε, X) from which

ω(ε, X) =

∫ X

0
dX →

ϑωg(ε, X
→) , f(ε, X) =

∫ X

0
dX →

g(ε, X →) . (4.21)

Similarly on the non-linear theory we have

d(F + 2WXG) = Wdε+WGdX + 2dWXG . (4.22)

We may regard G as a free function to be specified. W is then fixed by the integrability

condition

d(Wdε+WGdX + 2dWXG) = 0 , (4.23)

which in turn fixes F + 2WXG and hence F . In more detail, the integrability condition is

ϑXW + 2ϑωW (G+XϑXG) = ϑω(WG) + 2ϑXWXϑωG . (4.24)

Written in terms of the perturbative variables this is

ϑXω = ϑωg + ϖ (ϑω(ωg) + 2ϑXωXϑωg → 2ϑωω(g +XϑXg)) . (4.25)

As we have seen the linearized version of this equation is easily solved, and it is similarly

straightforward to solve this equation perturbatively to any order in ϖ by iterating this equa-

tion. We can also solve the system by first specifying W/ω and finding an iterative solution

for G/g by reading the equation as

ϑωg = ϑXω → ϖ (ϑω(ωg) + 2ϑXωXϑωg → 2ϑωω(g +XϑXg)) . (4.26)

4.2 Example: DBI-Galileon Duality

A simple exact solution to the integrability condition (4.24) is obtained by imposing W = 1

(ω = 0), since then the condition reduces to

ϑωG = 0 , (4.27)
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which in turn fixes F + 2WXG and hence F . In more detail, the integrability condition is

ϑXW + 2ϑωW (G+XϑXG) = ϑω(WG) + 2ϑXWXϑωG . (4.24)

Written in terms of the perturbative variables this is

ϑXω = ϑωg + ϖ (ϑω(ωg) + 2ϑXωXϑωg → 2ϑωω(g +XϑXg)) . (4.25)

As we have seen the linearized version of this equation is easily solved, and it is similarly

straightforward to solve this equation perturbatively to any order in ϖ by iterating this equa-

tion. We can also solve the system by first specifying W/ω and finding an iterative solution

for G/g by reading the equation as

ϑωg = ϑXω → ϖ (ϑω(ωg) + 2ϑXωXϑωg → 2ϑωω(g +XϑXg)) . (4.26)

4.2 Example: DBI-Galileon Duality

A simple exact solution to the integrability condition (4.24) is obtained by imposing W = 1

(ω = 0), since then the condition reduces to

ϑωG = 0 , (4.27)
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i.e. G = G(X) and F = F (X) =
∫ X
0 dG(X →)dX → 2XG. As an example consider the special

case

G(X) = ωε = ω
1↑

1→ 2X
, (4.28)

for which

F (X) = ω

(
1→ 1↑

1→ 2X

)
= ω(1→ ε) . (4.29)

This is exactly the extension of the Galileon duality to the DBI-Galileon theory [12] as shown

in [13].

In particular, since ϑ̃ϖ̃ = ϑϖ we have ε̃ = ε, and in di!erential form notation the DBI-

Galileon action is

S =

∫
ε
↑1

d∑

n=0

Cnϱ(dx)
d↑n(d(εϑϖ))n . (4.30)

which are the complete set of terms invariant under non-linearly realized 5d Poincaré trans-

formations (with the 4d part linearly realized) that preserve second order equations of motion

[12, 14]. Explicitly then, the duality transformation is

ϖ̃ = ϖ+ ω(1→ ε) , (4.31)

x̃
µ = x

µ + ωεϑ
µ
ϖ . (4.32)

and the DBI-Galileon action (4.30) transforms as

S =

∫
ε̃
↑1

d∑

n=0

Cnϱ(dx̃→ ωε̃dϑ̃ϖ̃)d↑n(d(ε̃ϑ̃ϖ̃))n , (4.33)

=

∫
ε̃
↑1

d∑

n=0

C̃n(ω)ϱ(dx̃)
d↑n(d(ε̃ϑ̃ϖ̃))n (4.34)

with

C̃n(ω) =
n∑

r=0

(→ω)r
(d→ n+ r)!

r!(d→ n)!
Cn↑r . (4.35)

Although the DBI-Galileon possesses a non-linearly realized symmetry, the duality would

apply for any function G(X) and Lagrangian coe”cients Cn(X), again demonstrating that

the symmetry is not essential.

5 Coupling to Matter

6 Coupling to Gravity

The generalized Galileon duality as we have described it so far is the combination of local

field redefinition and a field dependent di!eomorphism. It is the latter aspect which make

it unusual since the scalar theory is defined in a fixed Minkowski spacetime, but the duality
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Coupling to Massless Gravity?

• So far we have only defined the duality for scalar fields 
in Minkowski spacetime

• Since the duality is a field dependent diffeomorphism, a 
naive covariantization (covariant Galileon/Horndeski) 
will violate duality

• Solution appears to be to work in first order Einstein-
Cartan formulation where spin-connection is 
independent



Coupling to Massless Gravity?

To see why, consider Minkowski spacetime in vierbein 
notation

acts non-trivially on the coordinates. If we couple the scalar to gravity, then di!eomorphism

invariance becomes a local symmetry, and the coordinates become fundamentally irrelevant,

so what then is the content of the duality?

The answer lies in the description of Minkowski space. Utilzing vielbeins to describe a

general metric gµω = ωabe
a
µe

b
ωdx

µdxµ, where a, b are local Lorentz indices, then Minkowski

spacetime in Cartesian coordinates is described by the local Lorentz index valued one-form

e
a = dxa . (6.1)

The duality as described so far maps this to a second one-form which also describes a

Minkowski spacetime, but one whose coordinates are non-trivially related

ẽ
a = dx̃a = dxa + d(G(ε, X)ϑa

ε) = e
a + d(G(ε, X)ϑa

ε) . (6.2)

In other words, the duality is a local transformation of the vielbein, and hence the metric. To

generalize (6.2) to dynamical gravity we need to write it in a form for which both vielbeins

transform in the conventional manner under di!eomorphisms and local Lorentz transforma-

tions. To do this, we replace ϑ
a
ε with ”a which is defined by

e
a”a = dε , (6.3)

in other words ”a = e
µ
aϑµε. This ensures that ”a transforms as a scalar under di!eomor-

phisms but as a vector under local Lorentz transformations. We then define the Lorentz

and di!eomorphism scalar X = →1
2ωab”

a”b. Finally we need to introduce a one-form

spin-connection for the local Lorentz symmetry ϖ
ab and a covariant derivative D[ϖ]”a =

d”a + ϖ
a
b”b.

In a dynamical gravity theory, the duality can then be interpreted as a local field redefi-

nition of the field

ε̃ = ε+ F (ε, X) , (6.4)

together with a local field redefinition of the vielbein

ẽ
a = e

a +D[ϖ] (G(ε, X)”a) . (6.5)

under which the Lorentz vector transforms as

”̃a = W (ε, X)”a ↑ X̃ = W (ε, X)2X . (6.6)

So defined, the duality clearly preserves the local Lorentz symmetry and di!eomorphism

symmetry. This remains true for any spin-connection ϖ
ab. However, we cannot take ϖ

ab to

be the usual torsionless spin-connection since we require the duality to be invertible

e
a = ẽ

a →D[ϖ] (G(ε, X)”a) = ẽ
a →D[ϖ]

(
G(ε, X)W (ε, X)→1”̃a

)

= ẽ
a +D[ϖ̃]

(
G̃(ε̃, X̃)”a

)
. (6.7)

– 11 –

acts non-trivially on the coordinates. If we couple the scalar to gravity, then di!eomorphism

invariance becomes a local symmetry, and the coordinates become fundamentally irrelevant,

so what then is the content of the duality?

The answer lies in the description of Minkowski space. Utilzing vielbeins to describe a

general metric gµω = ωabe
a
µe

b
ωdx

µdxµ, where a, b are local Lorentz indices, then Minkowski

spacetime in Cartesian coordinates is described by the local Lorentz index valued one-form

e
a = dxa . (6.1)

The duality as described so far maps this to a second one-form which also describes a

Minkowski spacetime, but one whose coordinates are non-trivially related

ẽ
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a →D[ϖ]

(
G(ε, X)W (ε, X)→1”̃a

)

= ẽ
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This looks like a local field redefinition of the vierbein!!!
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Define a Lorentz vector/diff scalar 
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ẽ
a = dx̃a = dxa + d(G(ε, X)ϑa

ε) = e
a + d(G(ε, X)ϑa

ε) . (6.2)

In other words, the duality is a local transformation of the vielbein, and hence the metric. To

generalize (6.2) to dynamical gravity we need to write it in a form for which both vielbeins

transform in the conventional manner under di!eomorphisms and local Lorentz transforma-

tions. To do this, we replace ϑ
a
ε with ”a which is defined by

e
a”a = dε , (6.3)

in other words ”a = e
µ
aϑµε. This ensures that ”a transforms as a scalar under di!eomor-

phisms but as a vector under local Lorentz transformations. We then define the Lorentz

and di!eomorphism scalar X = →1
2ωab”

a”b. Finally we need to introduce a one-form

spin-connection for the local Lorentz symmetry ϖ
ab and a covariant derivative D[ϖ]”a =

d”a + ϖ
a
b”b.

In a dynamical gravity theory, the duality can then be interpreted as a local field redefi-

nition of the field

ε̃ = ε+ F (ε, X) , (6.4)

together with a local field redefinition of the vielbein

ẽ
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Define a spin-connection via a covariant derivative
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Condition for invertibility
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Requiring that the inverse of the duality transformation is also a 
duality transformation 

Imposes that 
These equations are only consistent if

ω̃
ab = ω

ab
, G̃(ε̃, X̃) = →G(ε, X)W (ε, X)→1

. (6.8)

By contrast, had we defined ω and ω̃ via the torsion free conditions dea + ω
a
b ↑ e

b = 0,

dẽa + ω̃
a
b ↑ ẽ

b = 0 then we would have ω̃ ↓= ω. The resolution is to work in the first-order

Einstein-Cartan formulation where ω is regarded as an independent variable in the action,

fixed by extremizing the action rather than imposing it is torsion free as a constraint. The

first-order formulation allows us to define the duality transformation by the combined local

field redefinitions

ε̃ = ε+ F (ε, X) ẽ
a = e

a +D[ω] (G(ε, X)!a) , !̃a = W (ε, X)!a
ω̃
ab = ω

ab
,

ε = ε̃+ F̃ (ε̃, X̃) e
a = ẽ

a +D[ω̃]
(
G̃(ε̃, X̃)!̃a

)
, !a = W̃ (ε̃, X̃)!̃a

ω
ab = ω̃

ab
,

F (ε̃, X̃) = →F (ε, X) , G̃(ε̃, X̃) = →G(ε, X)W (ε, X)→1
, W̃ (ε̃, X̃) = W (ε, X)→1

, (6.9)

without contradiction. There remains the integrability condition which is the non-trivial

requirement that

ẽ
a!̃a = dε̃ . (6.10)

Remarkably, since !aD[ω] (G(ε, X)!a) = →2XdG→GdX the integrability condition is iden-

tical to before

Wdε→ 2WXdG→WGdX = dε+ dF . (6.11)

In other words, whenever there exists a generalization of the duality in Minkowski spacetime,

this can be immediately extended to a gravitational theory in first-order Einstein-Cartan

formulation.

6.1 Covariant Action

It remains only to construct the gravitational analogue of the leading low-energy interactions

which map into themselves under the duality. Focussing for simplicty on those terms which

are linear in curvature, the obvious generalization of (4.1) is

S[e,ω,ε] =

∫ 1∑

p,q=0

d→2→p→q∑

m=0

Mmpq(ε, X)ϑed→2→m→p→q(D[ω]!)m(dε!)p(dX!)qR[ω]

+

∫ 


1∑

p,q=0

d→p→q∑

n=0

Fnpq(ε, X)ϑed→n→p→q(D[ω]!)n(dε!)p(dX!)q



 . (6.12)

with the conventional Einstein-Hilbert kinetic term arising from M000 = M
d→2
Pl /(d→2)!. This

action may be regarded as the first-order Einstein-Cartan formulation of Horndeski theories.
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Hence the spin-connection cannot remain the usual torsionless 
one (first order formulation necessary!!) since it does not 

transform when the vierbein does
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a +D[ω̃]
(
G̃(ε̃, X̃)!̃a

)
, !a = W̃ (ε̃, X̃)!̃a

ω
ab = ω̃

ab
,

F (ε̃, X̃) = →F (ε, X) , G̃(ε̃, X̃) = →G(ε, X)W (ε, X)→1
, W̃ (ε̃, X̃) = W (ε, X)→1

, (6.9)

without contradiction. There remains the integrability condition which is the non-trivial

requirement that

ẽ
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Conclusion: Whenever there exists a duality transformation for a 
scalar theory in Minkowski spacetime, we can couple it to 

massless gravity and preserve the same symmetry.
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Together with integrability condition



Covariant Action
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first-order formulation allows us to define the duality transformation by the combined local

field redefinitions

ε̃ = ε+ F (ε, X) ẽ
a = e

a +D[ω] (G(ε, X)!a) , !̃a = W (ε, X)!a
ω̃
ab = ω

ab
,

ε = ε̃+ F̃ (ε̃, X̃) e
a = ẽ

a +D[ω̃]
(
G̃(ε̃, X̃)!̃a

)
, !a = W̃ (ε̃, X̃)!̃a

ω
ab = ω̃

ab
,

F (ε̃, X̃) = →F (ε, X) , G̃(ε̃, X̃) = →G(ε, X)W (ε, X)→1
, W̃ (ε̃, X̃) = W (ε, X)→1

, (6.9)

without contradiction. There remains the integrability condition which is the non-trivial

requirement that

ẽ
a!̃a = dε̃ . (6.10)

Remarkably, since !aD[ω] (G(ε, X)!a) = →2XdG→GdX the integrability condition is iden-

tical to before

Wdε→ 2WXdG→WGdX = dε+ dF . (6.11)

In other words, whenever there exists a generalization of the duality in Minkowski spacetime,

this can be immediately extended to a gravitational theory in first-order Einstein-Cartan

formulation.

6.1 Covariant Action

It remains only to construct the gravitational analogue of the leading low-energy interactions

which map into themselves under the duality. Focussing for simplicty on those terms which

are linear in curvature, the obvious generalization of (4.1) is

S[e,ω,ε] =

∫ 1∑

p,q=0

d→2→p→q∑

m=0

Mmpq(ε, X)ϑed→2→m→p→q(D[ω]!)m(dε!)p(dX!)qR[ω]

+

∫ 


1∑

p,q=0

d→p→q∑

n=0

Fnpq(ε, X)ϑed→n→p→q(D[ω]!)n(dε!)p(dX!)q



 . (6.12)

with the conventional Einstein-Hilbert kinetic term arising from M000 = M
d→2
Pl /(d→2)!. This

action may be regarded as the first-order Einstein-Cartan formulation of Horndeski theories.
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In first order form (spin-connection is independent)

Duality transformations implyFrom (6.9) we infer

e = ẽ+ G̃(D[ω̃]!̃) +
εG̃

εX̃
(dX̃!̃) +

εG̃

εϑ̃
(d̃ϑ!̃) . (6.13)

D[ω]! = W̃D[ω̃]!̃+ dW !̃ = W̃ (D[ω̃]!̃) +
εW̃

εX̃
(dX̃!̃) +

εW̃

εϑ̃
(d̃ϑ!̃) . (6.14)

(dϑ!) = W̃ (dϑ̃!̃) + W̃
εF̃

εX̃
(dX̃!̃) + W̃

εF̃

εϑ̃
(d̃ϑ!̃) . (6.15)

(dX!) = W̃
3(dX̃!̃) + 2W̃ 2εW̃

εX̃
(dX̃!̃) + 2W̃ 2εW̃

εϑ̃
(d̃ϑ!̃) , (6.16)

which is to say that the transformations only generate the same 3 combinations (dX̃!̃),

(dϑ̃!̃), (D[ω̃]!̃) up to coe”cient functions of which depend on ϑ and X. Hence the set of

duality transformation clearly only generate terms which are already present in the (6.12)

and hence just act to transform the coe”cients in the manner

M̃mpq =
1∑

p,q=0

d→2→p→q∑

m=0

ϖmpq;m→p→q→(ϑ, X)Mm→p→q→ ,

F̃mpq =
1∑

p,q=0

d→p→q∑

n=0

ϱmpq;m→p→q→(ϑ, X)Fm→p→q→ . (6.17)

It is important to stress again that in this covariant version of the duality transformation

there is no field dependent di#eomorphism needed, the above equations are manifestly di#eo-

morphism invariant. The transformation is now just an invertible local transformation of the

vielbein, spin-connection and scalar field which necessarily satisfies the requirements of the

equivalence theorem.

Note that in general, the equation for the spin-connection that follows from (6.12) is not

algebraic (unless Mmpq = 0 for m →= 0, and this may suggest the existence of an Ostrogradski

ghost due to higher derivatives arising on integrating out the spin-connection. However, we

shall see below that the mass of any potential ghost in general lies well above the cuto# of

the EFT and hence cannot be regarded as a physical instability. Furthermore, if we begin

with a theory with the correct number of degrees of freedom (two tensors plus one-scalar),

the locality and invertibility of the field redefinition ensures that this remains true after the

transformation.

6.2 Explicit Example

As a concrete example, let us focus on the case d = 4 for which the starting theory is just

Einstein Gravity coupled to a scalar with a p(ϑ, X) model, familiar in the case of many cos-

mological models such as k-inflation and k-essence. In Einstein-Cartan notation the starting
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imply



Explicit Example
theory is3

S =

∫ →
↑g

[
M

2
Pl

2
R+ p(ω, X)

]
(6.18)

=

∫
ε

[
M

2
Pl

4
e
2
R[ϑ] +

1

4!
εe

4
p(ω, X)

]

=

∫
εabcd

[
M

2
Pl

4
e
a ↓ e

b ↓R
cd[ϑ] +

1

4!
εabcde

a ↓ e
b ↓ e

c ↓ e
d
p(ω, X)

]
. (6.19)

Since this is standard Einstein gravity, varying the action with respect to the spin-connection

yields the usual torsion free condition

dea + ϑ
a
b ↓ e

b = 0 . (6.20)

Now under the duality transformation we have

S =

∫
ε

[
M

2
Pl

4

(
ẽ+D[ϑ̃](G̃!̃a)

)2
R[ϑ̃] +

1

4!
ε

(
ẽ+D[ϑ̃](G̃!̃a)

)4
p̃(ω̃, X̃)

]
, (6.21)

with

p̃(ω̃, X̃) = p

(
ω̃+ F (ω̃, X̃), W̃ (ω̃, X̃)2X̃

)
. (6.22)

At first sight, (6.21) does not appear to give rise to second-order equations of motion. The

spin-connection ϑ̃ is no longer determined by the torsion free condition in terms of ẽ, However,

by virtue of the field redefinition it is clear that it will do so.

6.3 Decoupling Limit

7 Embedding in Massive Gravity

8 Discussion
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ẽ+D[ϑ̃](G̃!̃a)

)2
R[ϑ̃] +

1

4!
ε

(
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Conclusions (Old)

• Galileons emerge as decoupling limits of massive gravity and 
bigravity theories

• Galileon Duality maps two naive different Galileon theories 
into each other by means of a non-local field redefinition

• Galileon Duality preserves S-matrix



Conclusions (New)

• Galileon Duality can be generalised to any scalar field 
theory in Minkowski spacetime provided a simple 
integrability condition is met - Infinite free choice of duality 
transformations

• Duality transformations map class of theories that lead to 
second order equations of motion into each other

• Symmetry of Galileon theory is not important 
• Every theory in Minkowsi that admits a duality can be 

extended to a covariant theory in a simple way provided we 
work in the first order Einstein-Cartan formalism

• Resulting theories are in general not equivalent to the 
Horndeski/covariant Galileon theories.

• Covariant duality is a local field redefinition of the scalar 
and vierbein - leaves S-matrix invariant!!!!!


