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GW170817 August, 17th 2017, 12:41:01 UTC

First-principles models for observations



Constraints on EOS after GW170817

Mass-radius diagram from joint & coherent inference 
+ PSR J0952–0607, J0030+0451, 0740+6620
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The complete GW spectrum
SB+ [https://arxiv.org/abs/1504.01764] 
Breschi,SB+ [https://arxiv.org/abs/1908.11418] 
Breschi,SB+ [https://arxiv.org/abs/2205.09112]
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The complete GW spectrum
SB+ [https://arxiv.org/abs/1504.01764] 
Breschi,SB+ [https://arxiv.org/abs/1908.11418] 
Breschi,SB+ [https://arxiv.org/abs/2205.09112]

Central challenge: model tidal interactions (short-range/high-frequency)
Carry imprint of equation of state via a multipolar set of 

gravitoelectric and gravitomagnetic tidal polarizability parameters

https://arxiv.org/abs/1504.01764
https://arxiv.org/abs/1908.11418
https://arxiv.org/abs/2205.09112


● Effective one body approach to GR 2-body problem
● Map GR Hamiltonian in effective one [Buonanno&Damour 2000]
● Includes test-mass limit by design
● Includes post-Newtonian and self-force results
● Factorized (resummed) PN waveform [Damour,Iyer,Nagar 2008]
● Resummation techniques → predictive strong-field regime
● Includes tidal interactions (→ BNS) [Damour&Nagar 2010]
● Flexible framework → NR informed

● Latest release: Dalí  [Albanesi+ 2025] 
● Generic motion: bound (circular,eccentric) and hyperbolic 

orbits (dynamical captures & scattering)
● Generic binaries: spin & tidal interactions, postmerger 

completion, arbitrary length & mass ratio (e.g. EMRIs)

● Example application: GW190521 as a dynamical capture of two 
nonspinning black holes [Gamba+ Nature Astronomy 2021]

https://arxiv.org/abs/2106.05575
https://teobresums.bitbucket.io/


Factorized (resummed) PN waveform [Damour,Iyer,Nagar 2008]
Includes test-mass limit (i.e. particle on Schwarzschild)
Includes post-Newtonian and self-force results
Uses resummation techniques → predictive strong-field regime
Includes tidal interactions (→ BNS) [Damour&Nagar PRD 2010]
Flexible framework → NR informed

Credit: A.Taracchini

Effective-one-body framework in a nutshell

Credit: L.Barak



Tidal interactions in BNS

[Damour&Nagar 2009b] 

Hamiltonian
(Newtonian limit):

Waveform:

Tides are attractive and 
short range

Key point: No other binary parameter (mass, radii, etc) enter separately the formalism at LO

“Tidal coupling constant”

(Note Λ has a different expression, but same meaning)



Tidal polarizability coefficients
Encode EOS and compactness

Love numbers:

Tidal pol. coef:



● Quasiuniversal (EOS-insensitive) relations 
w/ tidal coupling constant  
SB+ [https://arxiv.org/abs/1504.01764] 

● First complete spectrum model 
(EOB completion with NRPM)
Breschi+ [https://arxiv.org/abs/1908.11418] 

● Improved frequency domain NRPMw
Breschi+ [https://arxiv.org/abs/2205.09112]  

kHertz GWs: NR-informed postmerger completion 

https://arxiv.org/abs/1504.01764
https://arxiv.org/abs/1908.11418
https://arxiv.org/abs/2205.09112
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https://arxiv.org/abs/1504.01764
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Public data release

CoRe www.computational-relativity.org

http://www.computational-relativity.org/
https://core-gitlfs.tpi.uni-jena.de/core_database
https://zenodo.org/communities/nrgw-opendata/?page=1&size=20


Full-spectrum constraints w/ Einstein Telescope

● Full-spectrum mock analysis of 
single event @ minimum SNR 
threshold for postmerger detection

NB SNR(PM)~8  vs. SNR(IM)~1000

● Postmerger signal helps constraining 
full stable branch of mass-radius 
diagram

● EOS sampling from 2 million 
piecewise polytropes with minimal 
hypothesis (causality, GR) 
+ current constraints from previous 
slide

      

Breschi, SB+ (2021)

https://arxiv.org/abs/2110.06957


Full-spectrum constraints w/ Einstein Telescope

Quadrupolar tidal polarizability – mass curve | pressure – mass density curve 

      Huez, SB+ (2024) 

https://arxiv.org/abs/2507.06293


“EOS Softness” (Hyperons, phase transitions,…)

Effect of hyperonic d.o.f. at remnant densities:
→ pressure support reduces w.r.t hadronic
→ more compact remnant or black hole formation 

Radice, SB+ [https://arxiv.org/abs/1612.06429]
Breschi, SB+ [https://arxiv.org/abs/1908.11418]
Breschi+ [https://arxiv.org/abs/2301.09672]

Einstein Telescope sensitivity to kHz GWs

Hyperons’ softening

“Thermal effects” (effective nucleon mass)

Increasing effective nucleon mass:
→ specific heat increases
→ thermal pressure support reduces
→ the remnants become colder and more compact 

Fields+ [https://arxiv.org/abs/2302.11359] 

https://arxiv.org/abs/1612.06429
https://arxiv.org/abs/1908.11418
https://arxiv.org/abs/2301.09672
https://arxiv.org/abs/2302.11359


“EOS Softness” (Hyperons, phase transitions,…)

Effect of hyperonic d.o.f. at remnant densities:
→ pressure support reduces w.r.t hadronic
→ more compact remnant or black hole formation 

Radice, SB+ [https://arxiv.org/abs/1612.06429]
Breschi, SB+ [https://arxiv.org/abs/1908.11418]
Breschi+ [https://arxiv.org/abs/2301.09672]

Einstein Telescope sensitivity to kHz GWs

Hyperons’ softening

“Thermal effects” (effective nucleon mass)

Increasing effective nucleon mass:
→ specific heat increases
→ thermal pressure support reduces
→ the remnants become colder and more compact 

Fields+ [https://arxiv.org/abs/2302.11359] 

How to actually detect these effects after a real event?
“real EOS” is unknown, candidate EOS are uncountable

Degenerate effects
uncertainties in empirical quasi-universal relations hard to quantify

https://arxiv.org/abs/1612.06429
https://arxiv.org/abs/1908.11418
https://arxiv.org/abs/2301.09672
https://arxiv.org/abs/2302.11359


Systematics & waveform accuracy

Gamba,Breschi,SB+ [https://arxiv.org/abs/2009.08467]

https://arxiv.org/abs/2009.08467


Systematics & waveform accuracy

Gamba,Breschi,SB+ [https://arxiv.org/abs/2009.08467]

Need to improve analytical description of tidal interaction
AND

Need to improve numerical-relativty data quality

https://arxiv.org/abs/2009.08467


Scattering of Two Neutron Stars

Fontebute, SB+ (2025)

https://arxiv.org/abs/2506.11204



Scattering of Two Neutron Stars

Fontebute, SB+ (2025)

https://arxiv.org/abs/2506.11204


Scattering angle and perturbative predictions
● Fixed “in” energy and varying “in” angular momentum 

● Two sequences: SLy “soft” and MS1b “stiff” EOS

● “Tidal free” contribution compatible with BH-BH scattering

● BH-BH term requires EOB-resummation of Post-
Minkowskian computations [Damour&Rettegno 2022]

● Tidal contribution significantly differ from EOB and Post-
Minkowskian computations (@ NNLO) towards dynamical 
capture threshold

→ higher order computation + resummation ?

● Transition to bound motion aided by significant mass ejecta, 
unbound rest mass ~ 1Mo

→ EM counterparts & rate constraints [Rosswog+ 2019]

      Fontebute, SB+ (2025)

https://arxiv.org/abs/2506.11204


NS-BH collisions (1974) Decompression of cold neutron star matter

D. Schramm, J. Lattimer, D. Eichler, T. Piran, F. Thielemann, and ...  
… many others

Unbound mass (baryons) 
m~0.001 - 0.1Mo

Mass ejecta & nucleosynthesis

Radioactive heating 
& thermalization 

( -decays, 𝛽
𝛼-decays, fission)

KILONOVA



Mass outflows: multi-scale & multi-physics 
● Dynamical ejecta 

GW driven phase, merger timescales ~few msec
m ~ 10-3 Mo, v ~ 0.3 - 0.6 c
Tidal & Shock-heated components

● Spiral-wave winds 
GW/viscous driven phase, timescales ~10-100 msec
m ~ 10-3 - 10-2 Mo, v ~ 0.1 - 0.4 c
Hydrodynamics (+neutrinos, +MHD)

● Neutrino- & MHD- turbulence driven disk winds 
viscous phase 0.1 - 1+ sec
m ~ 10-2 - 10-1 Mo, v ~ 0.1 c
Long-term evolution & nuclear heating

● Jet (~1+ sec)
Injection mechanism (MHD & neutrinos) + remnant 
jet dynamics & particles acceleration

Radice+ [https://arxiv.org/abs/1809.11161] 

https://arxiv.org/abs/1809.11161


Mass outflows: multi-scale & multi-physics 
Nedora, SB+ [https://arxiv.org/abs/1907.04872]● Dynamical ejecta 

GW driven phase, merger timescales ~few msec
m ~ 10-3 Mo, v ~ 0.3 - 0.6 c
Tidal & Shock-heated components

● Spiral-wave winds 
GW/viscous driven phase, timescales ~10-100 msec
m ~ 10-3 - 10-2 Mo, v ~ 0.1 - 0.4 c
Hydrodynamics (+neutrinos, MHD)

● Neutrino- & MHD- turbulence driven disk winds 
viscous phase 0.1 - 1+ sec
m ~ 10-2 - 10-1 Mo, v ~ 0.1 c
Long-term evolution? 
Nuclear heating, neutrino-dominated accretion

● Jet (~1+ sec)
Injection mechanism (MHD & neutrinos) + remnant 
jet dynamics & particles acceleration

https://arxiv.org/abs/1907.04872


Mass outflows: multi-scale & multi-physics 
[Perego+ 2014]

[Siegel+ 2014]

● Dynamical ejecta 
GW driven phase, merger timescales ~few msec
m ~ 10-3 Mo, v ~ 0.3 - 0.6 c
Tidal & Shock-heated components

● Spiral-wave winds 
GW/viscous driven phase, timescales ~10-100 msec
m ~ 10-3 - 10-2 Mo, v ~ 0.1 - 0.4 c
Hydrodynamics (+neutrinos, MHD)

● Neutrino- & MHD- turbulence driven disk winds 
viscous phase 0.1 - 1+ sec
m ~ 10-2 - 10-1 Mo, v ~ 0.1 c
Long-term evolution? 
Nuclear heating, neutrino-dominated accretion

● Jet (~1+ sec)
Injection mechanism (MHD & neutrinos) + remnant 
jet dynamics & particles acceleration



Mass outflows: multi-scale & multi-physics 

Moesta et al [https://arxiv.org/pdf/2003.06043]                   
(see also e.g. Kiuchi et al [https://arxiv.org/abs/2211.07637])     

● Dynamical ejecta 
GW driven phase, merger timescales ~few msec
m ~ 10-3 Mo, v ~ 0.3 - 0.6 c
Tidal & Shock-heated components

● Spiral-wave winds 
GW/viscous driven phase, timescales ~10-100 msec
m ~ 10-3 - 10-2 Mo, v ~ 0.1 - 0.4 c
Hydrodynamics (+neutrinos, MHD)

● Neutrino- & MHD- turbulence driven disk winds 
viscous phase 0.1 - 1+ sec
m ~ 10-2 - 10-1 Mo, v ~ 0.1 c
Long-term evolution? 
Nuclear heating, neutrino-dominated accretion

● Jet (~1+ sec)
Injection mechanism (MHD & neutrinos) + remnant 
jet dynamics & particles acceleration

https://arxiv.org/pdf/2003.06043
https://arxiv.org/abs/2211.07637


AT2017gfo & targeted simulations

Dynamical 
ejecta

w/ Spiral-
wave wind

Disc wind
(upper limit)

Nedora, SB+ [https://arxiv.org/pdf/2008.04333]

https://arxiv.org/pdf/2008.04333


AT2017gfo & targeted simulations

Dynamical 
ejecta

w/ Spiral-
wave wind

Disc wind
(upper limit)

Light-curve fitting needs at least two components w/ high/low opacities
Spherical two components models are incompatible with simulations

Three anisotropic components are statistically favoured 
(Bayesian model selection [Breschi+ 2021])



AT2017gfo & targeted simulations

Dynamical 
ejecta

w/ Spiral-
wave wind

Disc wind
(upper limit)

Spiral wave winds (+nu, +MHD) can easily produce the “blue” … but now:
How to make more “red” ?!

Dense & hyperaccreting disk can neutronize μ
e
 >~ θ = kT/m

e
c2 [e.g. Beloborodov (2003)]

→ second timescales e.g. [Kiuchi+ (2023), Sprouse+ (2023)] 



3D simulation to neutrino cooling timescale and collapse (~100ms postmerger)
Neutrino transport (M1) and turbulence sub-grid model (based on Kiuchi+ MHD data)

 SB+ (2024)

Neutrino-driven winds

https://arxiv.org/abs/2409.18185



 
Jacobi, Magistrelli, SB+ (2025)

Ejecta evolution with in situ nuclear network

2D ray-by-ray radiation-hydro simulation with in situ nuclear network to ~ weeks timescales
knecNN (Magistrelli+ 2024) = SNEC (Morozova+ 2015) + SkyNet (Lippuner&Roberts 2017)

https://arxiv.org/abs/2503.17445


Ejecta evolution with in situ nuclear network

2D ray-by-ray radiation-hydro simulation with in situ nuclear network to ~ weeks timescales
knecNN (Magistrelli+ 2024) = SNEC (Morozova+ 2015) + SkyNet (Lippuner&Roberts 2017)

 SB+ (2024)photosphere

https://arxiv.org/abs/2409.18185


Not so heavy elements: 56Ni production

 Jacobi, Magistrelli, SB+ (2025)

https://arxiv.org/abs/2503.17445


Not so heavy elements: 56Ni production

 Jacobi, Magistrelli, SB+ (2025)

Mass-averaged specific energy deviates from “-1.3” power law 
(combined heating from r-process elements formation) due to 56Ni (and 56Co)

Bolometric luminosity (@ 20 deg viewing angle) contribution of 56Ni is relatively small:
56Ni inside the photosphere and energy release is mostly in ɣ’s and ν’s 

https://arxiv.org/abs/2503.17445


Not so heavy elements: 56Ni production

 Jacobi, Magistrelli, SB+ (2025)

● Ɣ emission from kN: 20-50% tot.rad.energy
[Hotokenzaka+ (2016)]

● Light curves: large uncertainties in opacities and 
transport … but 
“similar to thermonuclear SNe and CCSNe a more 
direct measurement of the yields can be obtained 
by observing the photons from the decay of 
radioactive nuclei in the ejecta”
[Korobkin+ (2020)]

● Here: include iron-group elements & Doppler shift

● Detectable 40Mpc with future instruments 
(700-800 KeV)

● Evidence for long-lived remnant (?)

● NB Presence of 56Ni unclear in AT2017gfo
       

https://arxiv.org/abs/2503.17445


Exascale numerical relativity
GR-Athena++ [Daszuta+ (2021),Cook+ (2023)] based on Athena++ (Stone+)

https://arxiv.org/abs/2101.08289
https://arxiv.org/abs/2311.04989


Exascale numerical relativity
GR-Athena++ [Daszuta+ (2021),Cook+ (2023)] based on Athena++ (Stone+)

(Performance-portable AthenaK [Stone+ (2024), Zhu+ (2024), Fields+ (2024)])

https://arxiv.org/abs/2101.08289
https://arxiv.org/abs/2311.04989
https://arxiv.org/abs/2409.16053
https://arxiv.org/abs/2409.10383
https://arxiv.org/abs/2409.10384


Conclusion
BNSMs are extreme astrophysical labs and rich sources of multi-messenger emissions. Theoretical modeling 
is essential for the interpretation of signals from BNSMs, viceversa  BNSM are an ideal “playground" for a 
theorist (all fundamental interactions at the extreme!)

● Complete gravitational-wave models for BNSM are essential for signal detection and source inferences, 
e.g. to constrain NS matter via the measurement of tidal polarizability parameters and constraints on mass-
radius diagram. 

● Accurate & complete models start to be in place but systematics are not yet under control for high-
precision measurements. 

● Next-generation detectors will be senstitive to kHz GWs and could probe physical effects in extreme matter 
although unambiguous procedures for the detection of such effects are not yet available.

● Detailed (3+1)D multi-physics simulations of the merger aftermath are crucial for the interpretation of 
electromagnetic counterparts. State-of-art ab-inito simulations incorporate GR, MHD, microphysical EOS, 
and neutrino radiation.

● Kilonovae shine from multi-component & anisotropic mass ejecta; some properties correlate to the binary 
parameters → multi-messenger analyses.

● Simulations cannot yet quantitatively fit the observed AT2017gfo data, although many features are 
qualitatively explained. 

● Nuclear and atomic uncertainties will be soon dominating predictions (?).



Backup slides



Numerical relativity in a nutshell

High-performance-computing (HPC)

GR Formulation and Cauchy problem
+ GR hydrodynamics

Numerical methods for PDEs on adaptive grids

Coordinates and Singularities 







Tides

Chirp mass



Post-merger detection with 3G are possible
Breschi,SB+ [https://arxiv.org/abs/2205.09112]

https://arxiv.org/abs/2205.09112


Weak interactions in the dynamical ejecta

[Perego,Radice,SB ApJL 2017]   See also [Wanajo+ 2014, Sekiguchi+ 2016, Foucart+ 2017/2018]

Neutrino absorption determines both composition and kinetic properties !



Electron fraction

Perego, SB, Radice [ https://arxiv.org/abs/1903.07898 ] 

Discs around NS and BH remnants

Mass, compactness, composition depends on binary parameters and central remnant
Disc masses can be estimated from the reduced tidal parameter Λ  (EOS-insensitive relation) 
Disc winds significantly more massive than dynamical ejecta

[https://arxiv.org/abs/1809.11161]

https://arxiv.org/abs/1903.07898


Remnants after the GW-driven phase

Radice, Perego, SB, Zhang [https://arxiv.org/abs/1803.10865]
Nedora, SB+ [https://arxiv.org/pdf/2008.04333]

● Angular momentum (“super-Keplerian”) and 
mass in excess

● Evolution governed by neutrino cooling and 
viscous processes (magnetic turbulence & 
stresses, neutrino heating, etc)

● Discs <~ 0.1Mo: Nuclear recombination    → 
Massive winds

[Siegel+ 2014][Perego+ 2014]

https://arxiv.org/pdf/2008.04333


Viscous phase: (3+1)D GR simulation w/ M1 and MHD subgrid model     
Radice&SB [https://arxiv.org/abs/2306.13709] 

Viscous phase
● NS remnant has angular momentum (“super-

Keplerian”) and mass in excess 

● Accretion discs: highly dependent on remnant 
(composition), non-Keplerian, hyperaccretion 
@ black hole formation, etc. 

● Evolution governed by neutrino cooling and 
viscous processes (MHD turbulence & 
stresses, neutrino heating, etc)

● → quantitative predictions not yet available

● Indication for massive winds

https://arxiv.org/abs/2306.13709


Viscous phase: (3+1)D GR simulation w/ M1 and MHD subgrid model     
Radice&SB [https://arxiv.org/abs/2306.13709] 

Viscous phase
● NS remnant has angular momentum (“super-

Keplerian”) and mass in excess 

● Accretion discs: highly dependent on remnant 
(composition), non-Keplerian, hyperaccretion 
@ black hole formation, etc. 

● Evolution governed by neutrino cooling and 
viscous processes (MHD turbulence & 
stresses, neutrino heating, etc)

● → quantitative predictions not yet available

● Indication for massive winds

Perego, SB, Radice  [ https://arxiv.org/abs/1903.07898 ] 

https://arxiv.org/abs/2306.13709
https://arxiv.org/abs/1903.07898


Long-lived Remnants: spiral-wave winds

~100 ms 3D ab-inito evolutions with microphysics, M0 and GRLES (turbulent viscosity)

Nedora, SB+ [https://arxiv.org/abs/1907.04872]

Timescale ~ 10s ms postmerger (to collapse)
Mass ~ 0.01Mo (to 100ms)
Generic mechanism boosted by neutrino heating/MHD component

https://arxiv.org/abs/1907.04872


[Li&Paczynski 1998,Kulkani 2005,Metzger+ 2010,Kasen+ 2013,Grossmann+ 2014,Metzger LRR (2017)]

Kilonova: UV/optical/IR transient powered by the 
radioactive decay of freshly synthesized r-process 
elements

● high energy photons from nuclear decay
● photon thermalization in expanding ejecta
● thermal emission if:

t_diffusion ~ t_expansion
● key parameters: ejecta velocity (v), opacity 

(k), and mass (m) 

alpha = 1.3

[Grossmann+ 2014]

Kilonova basics

https://arxiv.org/abs/astro-ph/9807272
https://arxiv.org/abs/astro-ph/0510256
https://arxiv.org/abs/1001.5029
https://arxiv.org/abs/1303.5788
https://arxiv.org/abs/1307.2943
https://link.springer.com/article/10.1007/s41114-017-0006-z
https://arxiv.org/abs/1307.2943


Systematic study of remnant and ejecta properties: neutrino schemes and mesh resolutions 
Zappa, SB, Radice, Perego [https://arxiv.org/abs/2210.11491]  

Role of neutrino heating in nucleosynthesis 

Gray M1 scheme with complete radiation-matter sources Radice,SB,Perego,Haas [https://arxiv.org/abs/2111.14858]

https://arxiv.org/abs/2210.11491
https://arxiv.org/abs/2111.14858


Radice,SB,Perego,Haas [https://arxiv.org/abs/2111.14858]

Impact of neutrino transport scheme

https://arxiv.org/abs/2111.14858


AT2017gfo Bayesian inference

 Bayesian model selection: 3-components + anisotropic models preferred 
 Breschi+ [https://arxiv.org/abs/2101.01201]

https://arxiv.org/abs/2101.01201


AT2017gfo requires disk formation, 
and thus constrains the reduced tidal parameter 

Radice,Perego,Zappa,SB [ https://arxiv.org/abs/1711.03647 ]

https://arxiv.org/abs/1711.03647


      

Joint analyses to maximize science output 

Radice,Perego,Zappa,SB [ https://arxiv.org/abs/1711.03647 ] (proof-of-principle)
Breschi+ [https://arxiv.org/abs/2101.01201] (full Bayesian realization)

Remnant modeling

Waveform modeling

https://arxiv.org/abs/1711.03647
https://arxiv.org/abs/2101.01201
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