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Introduction



Quadratic Gravity

What is Quadratic Gravity?

e Extension of GR with 2nd-order curvature terms.
e |t is power-counting renormalizable

e Based on the action:
S= /d4x\/ Chuvpe CHP7 4 5/?2) (1)

where the Weyl tensor is defined as

2
Coivpo CHP7 = 2R, R" — §R2 +9 (2)

and the GB invariant is given by

G = R? — 4R, R"™ + Ryppe R (3)
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Quadratic gravity

Degrees of freedom

e the usual massless spin-2 mode g,,,,
e massive spin-0 mode with mass m3 = 1/(6/3)

e massive spin-2 mode with mass ;% = 1/(2a)
- It comes with the “wrong” sign of the kinetic term = ghost-like

- This is issue is avoided in an EFT approach. However quadratic corrections can be
“eliminated” by field redefinitions (g, — gu + c1g8. R + ©R,) [Endlich et al.,
2017]

» It predicts hairy BHs [Lu et al., 2015]
» It has a well-posed IV formulation [Noakes, 1983] and numerical simulations have
been performed [Held et al., 2023, 2025]



Quadratic Gravity

Re-writting the Lagrangian

e Static, asymptotically flat BHs in QG have R = 0. Without loss of generality we
may set =0
e We introduce an auxiliary field
1 1
fuy == _E <R;U/ - 6Rg;w) (4)

e The action is now

5= [ atvTg [R+26u6" 442 (fuf — ) ©)



Quadratic Gravity

Equations of motion

Varying with respect to f,,
ED) = G + 1 (fuor — Buw) =0
Taking the covariant derivative of the above we find
=V, —V,f=0
Varying with respect to g, we get

5/(5/) = Ufw — VuVof +2Rp0, 7 + W {f“l’(f 1)+ guw (f i

(6)

(7)

;faﬁfaﬁﬂ =0 (8)
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Non-GR BHs

061 / e The branch of non-GR BH solutions can
be found for

04f .o ! ]
= 0.876 < p < 1.143, (9)
< 02} ]

where p = r, /20 = rpp
0.0 5 _
2 Ni%ggéve e The straight line, corresponds to the
-02 R Schwarzschild branch
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Semi-analytic solutions

Semi-analytical solutions in spherical symmetry [Kokkotas et al., 2017]:

1
ds? = —A(r)dt® + o —dr? + r? (d6? + sin® 0 dp?)

B(r)
Z.J ': N T A
— p=rnp 1l A(r) = xf(x) (r) = h(x)?,
é 2.0 —— Numerical ] B(r)
= Semi-analytical
g“ st Schwarzschild ] where
|
o 0] f(x) =1 — (1 — x) — (1 = x)* + F(x)(1 = x)°,
N h0) =1+ )1 = #)
~ fi ~ by
ol ) R R
N T 1y B
I+ S T
T/T‘h 1+ I
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Perturbations

We introduce the following perturbations

8w = g/w +e 6g;w ) (10)
fuu - f_,;l,l/+€5f[,bu' (11)



Perturbations

We introduce the following perturbations

The decomposition now takes into account the RW gauge only for dg,,,,

08im =

o =

0
0

* O O

*

Euvy = g;w +e€ 5gw/ )

fow = Fop + € 6F -

0 —hocscld, hosind Oy

0 —hicscld, hysint Oy
* 0 0

* 0 0

0 Focsc00y —Fosinf0y
0 Fiesc00y —Fisinf0y
* —FrcscO X  Frsind W
* * Frsind X

(13)



Perturbations

We introduce the following perturbations

Buv = Buv + €08 (10)
fow = Fop + € 6F, - (11)

We distinguish between two different cases

e Ricci tensor flat solutions: with R, = 0 (i.e. Schwarzschild background)

e Ricci scalar flat solutions: with R = 0 (includes the hairy solutions)



Perturbations: Ricci-tensor flat

Ricci-tensor flat background
The perturbation equations are simplified significantly and decouple:

0E®) = §Gp + 1126, =0 (12)
6EF) = D66, + 2R, 077 — p26f,, = 0 (13)

We may write the system of eqgs as

Puipleuivu—o (14)
dr? dr N

where W = (V) W@ wO) = (h, F, F),
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Perturbations: Ricci-tensor flat

Ricci-tensor flat background
We solve the system

o v+ P d Y+ Vy=0 (15)
az” g VY
where
Pii 0 P Vii Vo Vi3
P = 0 P22 0 y V = 0 V22 V23 y (16)

0 0 Pss 0 Vi Vi3
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Perturbations: Ricci-tensor flat

Ricci-tensor flat background
We solve the system

o v+ P d Y+ Vy=0 15
anV TPV = =
where
Pii 0 P Vii Vo Vi3
P = 0 P22 0 y V = 0 V22 V23 y (16)
0 0 Pss 0 Vi Vs

with appropriate boundary conditions

e purely outgoing modes at infinity
e purely ingoing modes at the horizon

11



Perturbations: Boundary conditions

Boundary conditions Boundary conditions
h = —eiiw (™ 2M)"1 e'kr XZ (n) eiwr 2iMw Z H}Z)
1(r) = (r — 2M)2iMe Zo 1 (r—2M) rn— 1 — pn—1
Fi(r) = e YA —2M)t R =y il
! (r — 2M)2Ms £ 1 1(r) = "
n= n=0
_ e (") " . Fim
Rl = i 2 B2 R =y T
" —0

where k = \/w? — p2 and x = M(u? — 2w?)/(ik)
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Perturbations: Ricci-tensor flat

¢ =2, n=0 (vector) ¢ =2,n=0 (tensor)
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Perturbations: Ricci-scalar flat

Ricci-scalar flat background
The perturbation equations are now:

Oy - ,uzéf,“, — /tzgwéf =0 (17)
D6t — ViV 4+ 2(Rouou 0" + 6Ryue f77) + 11 [ — 61 )
_ 1- _ _ 18

+ (8w + fu)0f + Eff”fpg + gwf;,oéfp”} =0

We may write the system of eqgs as
d? d

— W Ph—_w 4 vy = 19
dr? o dr o Y (19)

where W = (W) W@ wO) = (h, F, F),
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Perturbations: Ricci-scalar flat

Ricci-scalar flat background

We solve the system

diuurphiuur Vi =0 (20)
dr? dr -
where
P {71 0 P {'3 V1h1 V1h2 V1h3
P" = P2hl P2hz P2hs ) vh = V2h1 V2h2 V2h3 ) (21)

P?,: 1 0 P :?3 V3h1 V2h3 V3h3
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Perturbations: Ricci-scalar flat

Ricci-scalar flat background

We solve the system

d—2w - pr 9y + Vhv =0 (20)
dr? dr
where
P {71 0 P {’3 V1h1 V1h2 V1h3
P — P2hl P2hz P2h3 ) vh— V2h1 V2h2 V2h3 ) (21)
P 3’71 0o P :?3 V3h1 V2h3 V3h3

Now the perturbations are coupled = the boundary conditions need to take that into
account:

e All perturbation functions receive contributions both from the massive and massless
modes at the horizon and infinity

e Again we take purely ingoing/outgoing modes at the horizon /infiinty 5



Perturbations: Boundary conditions

Horizon Infinity
i HY 1)
)= (e St ()= o S e z—
A0 = — 30 = ) _ e Z RS | gor s > Ao
A = e S A7~ ny _ o z oor e 5 )
n—= n=0

where ¢ and b; are the coefficients appearing in the near-horizon expansions of the
background solutions, k = \/w? — 2 and x = M(u? — 2w?)/(ik)
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Perturbations: Ricci-scalar flat

¢ =2, n=0 (vector) ¢ =2,n=0 (tensor)
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GW Emission




Mode excitation

Are the massive modes excited?
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Mode excitation

Are the massive modes excited?

To study this problem we consider a non-Trivial EM tensor which modifies the equations.
For the GR background the equations read

Gy + 1

O6F + 2R,0, 07 — 26,

of,

Qv

8

3

_ 81 _
V6t = 3—;VJ

of

B 8
= 3

B I

= 8 (TW -

3

1
Euw T +

1

32

v.V,T

)

(22)
(23)
(24)

(25)
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Mode excitation

Are the massive modes excited?

To study this problem we consider a non-Trivial EM tensor which modifies the equations.

For the GR background the equations read

0Gu + :u25f;t” - S?ngw T

O6F., + 2R,0, 077 — ti26f,, = 87 (TW —

_ 81 _
VY6t = 3—;VJ
8

of = —
3u?
What happens in the limits?

e when My > 1 do we recover GR exactly?
e when My ~ 17

3

1
Euw T +

1

32

v.V,T

)

(22)
(23)
(24)

(25)

18



Mode excitation

We now need to examine the polar sector

AH(’,’" 7 Hf’" )2 0 0
Bl G 0 0
6 Im _ & 2 26
gp01 0 0 r2 HEm Yém 0 ) ( )
0 0 0 r?sin? QH!m ytm
AFém Yém F{m Yﬂm ngmae Yﬂm 77gmagi) Y@m
5f€m _ o Bfl F2€m Yfm nfm@g yfm n{ma{é YZm
pol * o r2 [Kfm Yfm + Gfm W@m] r2 GZmXém )
* * * r?sin? g[Kmy*m — G'mwtm]

(27)
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Radially infalling particle: monopole

The equations we need to solve in presence
of a source

d2+Pd—|—V V,,=S8 (28)
dr? dr fm =

where the source matrix is defined by

T, = (50, 50,50, 59 =

(S5, S5, S5, S

Im > Im >
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Radially infalling particle: monopole

The equations we need to solve in presence

of a source
d? d
(ﬁ + Pd— + V) Vo = Sy (28)

where the source matrix is defined by
sgm = (s 52 sgm,s“)) =

Im>
(SK 51771) SZ Sfm )

m > ~1m>

» For the monopole we can write a single
master equation

d2 K*
dr?

+ (w? = Vo) K =Sk« (29)

Mp=0.01| 3

ru=10 [}

Mp=0.05| 3
re=10 [

3 Mp=0.1 J
3 =10

(t—r)/M
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Radially infalling particle: monopole

» Tracking either the waveform peaks or
the amplitude we deduce an exponential
suppression for masses larger than
My ~0.1. -
» Small values of My have already been oo 3
shown to give very small deviations from GR _ oiwje °\b\
in massive gravity. g’ oot0f \‘\D
E T L
» This points towards extremely small :8 0 ok ,F ] R
deviations from GR in the regime of interest R :J,"' : tk‘c
e Y YR Y =9,

concerning masses larger than My ~ 0.45. 004 008 , | ]
0 0.1 0.2 0.3 0.4 0.5 0.6

Mu
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Radially infalling particle: dipole and quadrapole

10 -
~ (=1
. 1 o So
» The peak of the waveforms is 3 ..
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exponentially suppressed for any angular B ta
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04F ﬂ g CN ° o ‘Klpmk o
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Mp
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Circular orbits

» in this case we can consider the emission
of the usual massless mode. The massive
ones are not relevant here because the ISCO
sets an upper bound on w — we cannot
probe My >1

» We focus on the (2,2) mode

» Once again the GR deviations are highly
suppressed in the stable regime

100

My
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» The existence of GR and hairy BHs within the framework of quadratic gravity leads to
a much more complicated QNM spectrum.

» The hairy branch seems to be stable in the range where hairy solutions exist.

» In GR backgrounds, for radially plunging particles and circular orbits we deduce an
exponential suppression of QG deviations from GR in the non-perturbative regime.

» Do these results translate to the hairy branch of solutions as well?

24



‘Thank you! /
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