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What are these secondary GWSs?

Cosmological Principle: The metric is
homogeneous and isotropic

) Scalars: @ y®

€
59uv — z —~ % Vectors:VL(ln)
n=1

Need to describe structure:
For spacetime: g,,, = guv + 09y
For matter:T,, = T,, + 6T,

Tensors: hp(;l,)
Same for 8T,

Gravitational Action (aka
combinations of
geometric tensors like R)

|

] ] _ Expansion to 2" order, focusing
Field Equations (typically l e
| consist of Juv and its derivs ) onty on fyy

Variation wrt g,,, \

Expansion to 1%t 2 )
order Diff eqt Of h; Source term
VT d = Function o f 15t and Z”dorder quantltles
ecomp
 Scalars: Diff eqs of @, WM  Describe structure

i st
« Vectors: Diff eqt of V&l) — Typically not sourced Focusing only on 1* order scalars

» Tensors: Diff eqt of h!(;,) ( eg A h(l) = 8;) ) -

Scalar Induced Gravitation

Waves : SIGW (eg A hl(ﬁ,) =
2

Sl(w) IR

GWs at linear order




Intuition about SIGWs

* General form of SIGW produced by a scalar field ¢ [Domenech 2021]

h;i? T Q:Hh’;j - 'iﬂkhfj =P ij 1Labj = P ij 10a09Opop} —— Pp = Z P o< P35,
)

1

Es“z?.__ghg x P

* In an inflationary setting Ps» ~ Pr and assuming only RD we get Qiduced),? o

T QEwedn? ~ 1075PF

* Approximate sensitivity of future detectors Q&greedn? ~ 1016

On CMBscales k~10*-05Mpc" Pr~10"7 —— too small

* In general, there is a need of an enhancement of 6¢ for SIGW to be observable
* Even non detection gives meaningful constrains Pz ~10*—-107°

* Main advantage : SIGWs provide unique access to sub-CMB scales k ~ 107 — 10** Mpc ™



Essentials of SIGWSs in GR

* Working in the Newtonian gauge, the 2" order tensor perturbations are described as
follows

ds? = a®(n) {—(1 +20)dn? +

hiil .
(1—29)d;; + ?"] d.’;:"d:ﬂ-’}
* Their equation of motion in fourier space is k" + 2Hh,) + k*hj, = AS;,

#
F-

3(1 + “-‘ml.)

d:;q
(27)3/2

* The source termis 5 = [

5 (k)i [24‘-'{.:%_{.: ¥ (0 4 ) (H D+ )

* At the end, the spectral abundance of GWs can be given by

p

er':i hﬁ:
2mré

1 dpgw(mk) 1/ k \*= ls)
Qaw (1, k) = pew (1. ) (—) P,E_'}(?;,fs:) and Pi'('ﬁh-’n-')=

T et dmk 21 \H(p) X r[l’lf.‘1/ dul*(u, v, z)Pg(kv)Pp(ku)

The kernel I(u,v,x)is a complicated function which describes the time evolution of the
potentials (via transfer functions).



Common sources of SIGWs

Enhanced curvature perturbations during inflation
Large scalar fluctuations at small scales ( eg via inflection points )= strong SIGWs

* Preheating and resonances
- Nonlinear dynamics of inflaton and spectator fields

Primordial black holes (PBHs)

on/isocurvature fluctuations in PBH distributions \
This talk!

e Cosmological phase transitions
— Strong transitions (e.g. GUT, EW scale) amplify scalar inhomogeneities

udden transitions between eras
— e.g. Early Matter Domination - Radiation Domination ("poltergeist mechanism")

* [socurvature modes from spectator fiefds
— Generate additional SIGW channels



General concept
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Sources of eMDs we considered

= The source with which we were primarily preoccupied is a gas of ultra- light PBH.

» It was first studied in [Papanikolaou, Vennin, Langlois, JCAP, 2021] and we applied it to various works, among
which the most notable are:

> Its pioneering extension to an f(R) gravity theory in [T. Papanikolaou, C. Tzerefos, S. Basilakos, E.N. Saridakis,
JCAP, 2022] and then [Papanikolaou, 2025]. Currently, | am refining that approach in [ C. Tzerefos, in prep ].

» |Its production in a no-scale SUGRA model in [S. Basilakos , D.V. Nanopoulos, T. Papanikolaou, E.N. Saridakis, C.
Tzerefos, PLB, 2024]

= We also considered BSM cosmological models with particular reheating processes, which induce an eMD.
» Flipped SU(5) theory in [S. Basilakos , D.V. Nanopoulos, T. Papanikolaou, E.N. Saridakis, C. Tzerefos ,PLB, 2023]

» String — inspired Axion- Chern- Simmons — Running- Vacuum cosmology | C. Tzerefos, T. Papanikolaou, S.
Basilakos , E.N. Saridakis, N.E. Mavromatos PRD, 2025].



What are ultra-light PBHs

Primordial black holes (PBH) form in the early universe out of the collapse of enhanced
energy density perturbations upon horizon reentry of the typical size of the collapsing
overdensity region s— o > 8,1 Mpgy = YMy H

Pb

We will consider ultra-light PBHs for which Mppy < 109g . Some of their advantages:

v'They can induce an early matter dominated era (eMD) since Qppy = pprpy/Pi < @ >/a™* « a and
evaporate before BBN. Their evaporation could drive the reheating process (e.g. [Martin++, JCAP,
2019] )

v'This eMD era enhances the magnitude of the curvature perturbation and consequently gives rise
to scalar induced gravitational waves (SIGWSs) with very interesting phenomenology. For instance,
one can constrain the underlying gravity theory (see later)

v'Their Hawking evaporation can alleviate the Hubble tension by injecting to the primordial plasma
dark radiation degrees of freedom which can increase N.rr (e.g. [Nesseris++, 2019] )



SIGWs from Poisson fluctuations of a gas of PBHs
in GR

 Random distribution of PBHs + same mass ~, they follow Poisson statistics :

P, (k)= (|8PBH|?) = b T here k < k
= = — ] = . where =
Opaii 3 \a 3ky oy

~ | 2

* Since pppy is inhomogeneous and py,: is homogenous . 5,5, isanisocurvature
perturbation

* Jppy generated in the eRD era will be converted in an eMD era to a curvature
perturbation {ppy associated with the scalar potential [Papanikolaou, Vennin, Langlois, JCAP, 2021]

9 PR 4 2y 2 ls); JE-,‘]”]' ‘ 9 .
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SIGWs from Poisson fluctuations of a gas of PBHs
in GR
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A) First application

We first implemented all these ideas in a model of no-scale SUGRA
[S. Basilakos , D.V. Nanopoulos, T. Papanikolaou, E.N. Saridakis, C. Tzerefos ,PLB, 2023]
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Theoretical introduction

 The most general (N=1) SUGRA is characterized by two functions: The Kahler potential K,
which is a Hermitian function of the matter scalar field and quantifies its geometry, and a
holomorphic function of the fields called superpotential W. V is the scalar potential :

~2

S / d* /=g (h! 0O DI — v) with 1V = X (D?-_ WKID,W — 3 WF) + % (K'T®;)?

DK

=, DiW=9;W+K,W and i = {¢,T} which are chiral superfields.
0D D)

and j{?_;((b(b)

 The simplest globally supersymmetric model is the Wess-Zumino one, which is characterized

. T A
by one single chiral superfield % and the following superpotential: W %@9‘3 — 5@9‘* ,

with a mass term /¢ and a trilinear coupling term A



No-scale Wess-Zumino (NSWZ) SUGRA

* In order to facilitate early universe inflationary scenarios, we shall embed this model in the
contextof SU(2,1)/SU(2) x U (1) no-scale supergravity by matching the 7" field to
the modulus field and the ~ field to the inflaton. The corresponding Kahler potential for this
construction is

K — —3In (T + T — Hﬁj)

&

* Remarkably, by setting 7'=1 = % , Imyp = 0 and making a transformation of « in order to
obtain a canonical kinetic term, one obtains Starobinski inflation for A/ =1/3 and i = py/¢/3

0.6
[Ellis, Nanopoulos, Olive, PRL, 2013], 0 5
[Nanopoulos, Spanos, Stamou, PRD, 2020] 0.4;— | — Ap=0.33327
2 = 2 X o3f 5 Ap=0.33330
1 — /2 i ] g
lf’(X):L 1 —e¢ 3 X = f Nu=L
4 0.2} ] =5
: — Mp=0.33336
Y 0.1t .
w:ﬁfﬁ{jt;.ﬂlh — oob—NMA NS Fig. from
V3 T o 2 4 6 8 10 Spanes stamen

5% PRD, 2020]



NSWZ SUGRA inflection point inflation

« A common mechanism to produce PBHs is via the use of inflationary potentials with inflection
points aka points where V'(¥igection) = V' Uinfiection) =~ 0 Which induce the so-called ultra slow
roll inflation (USR)

* To realize such set-ups, one can introduce the following non-perturbative deformations to
the Kahler potential first introduced in [Nanopoulos, Spanos, Stamou, PRD, 2020]:

pp

L,

with a and b real constants

K=-3n [T—I—T— +q e iet) (p—l—\p)l

* At the end, one obtains the following potential

361269 92 (cp? — 2V3c A o + 3% 6°)

V(o) =
[—48ag?* + e (=3c + ¢?)] 2 et — 240 ¢?(6 + 4bP? (=9 + 8b¢?))]




Ultra light PBHs in no-scale SUGRA

Our modified potential gives rise to the following power spectrum given our choice of
fiducial parameters:
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eMD driven by PBHs

* Since Qppy = pppu/p X @ /a™ xa an eMD era driven by them arises

Q; — 0.95
dpp .
e To find their mass function A8(M) = S~ 35 we use peak theory and obtain: . — 0.5 /

10-8 \

11V
10 E i
10710 1 Taking into account their !
Hawking evaporation !
10712 4 o 1/3 ] i
M(t) = Mg {1 - .ﬂ.u_wu.{{er}} 107 5 i:
— 1 I
= 1014 ' '
1
1 N
10-16 4 i
102 o
11
1018 4 5
- —— {lpgn i i
' 0, il
10—20 T T T T 10— T T T J T H
10° 108 1ot0 102 0 10 20 30 40 50
M WV — Ning

Note: We treat mass function as monochromatic ——» eMD to IRD sudden



The relevant GW sources and their spectrum

A) Inflationary adiabatic perturbations ——— GWs with two peaks

i) GWs are produced by the enhancement of Pr (k) (peaked at 10Mpc') at PBHs
scales peaked at the kHz range [Kohri, Terada, PRD, 2018 |
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Inflationary adiabatic perturbations

ii) It is related to the resonant amplification of curvature perturbations of scales entering
the horizon during the eMD era. Specifically, since @ goes quickly from O (since
D=constant in any MD) to ®'#0 during IRD s, there is a resonant enhancement of GWs

mainly sourced by the term H 2®"

Also, since duringa MD d~ a , we need to ensure that we are working in the perturbative
regime ——— we introduce a nonlinear cut- off scale : ok, (n:) — 1

KNL
27Ta0

At the end, few pear=C ~nHz



Inflationary adiabatic perturbations

This GW signal peaks at the nHz frequency range and is in agreement with
NANOGrav/PTA GW data.
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The complete three-peaked signal

Mppyg = 7 X 108g, S_ZPBHS[:‘ = 10—°

106

108

10—10

1012

QGW ('7]0, A?Jhg

10— 14

Inflationary perturbations

1[}—16 - PBH isocurvature perturbations
PBH formation
- A N_rp bound
= NANOGrav — 15years

10—18

10—8 10—6 104 10—2 109 102 104 106

f(Hz)

A simultaneous detection of all three peaks could be an indication in favor of no-scale SUGRA, or the
presence of eMDs by PBHs in general




Bi) Further application

A similar set-up naturally exists in the for flipped SU(5)x U(1) theory
[S. Basilakos , D.V. Nanopoulos, T. Papanikolaou, E.N. Saridakis, C. Tzerefos ,PLB, 2023]
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GW signal from an eMD era in flipped SU(5)

This time, instead of the PBH, the eMD is induced by the flaton field, a field responsible for
the GUT phase transition (eg [Ellis, Garcia, Nagata, Nanopoulos, Olive, JCAP, 2019])

Again, the transition from eMD to IRD is sudden —— there is the same resonant
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Bii) Further application

= A prolonged reheating which induces an eMD also occurs in string — inspired Axion-

Chern- Simmons — running- vacuum cosmology [ C. Tzerefos, T. Papanikolaou, S. Basilakos , E.N.
Saridakis, N.E. Mavromatos PRD, 2025].

R -
SJEBH = /d4#ﬁ —g {Co + R [i‘l + ¢ log (R )} + L, + ... } L,, = —% 0,b0"b — %Sﬂ_a 0"a —V(b,a)+
D e

V(b, a) = A, (—1+f,;1e§1 al: )) cos(fa " ta(z)) +—(fb Ao® + *ﬁ) a(z) + Ao? b()

EL

= Depending on the parameters, the reheating period can be prolonged and is driven by
the (sudden) decay of the axion field a(x).



SIGWs in f(R)

R 1
f[:fl)) =c¢p+ R ((’1 + ¢3 log (ffﬂ)) FR;IF - EH}LHI + {Q;M;D — ?_u.vu]F — HTTG'I:E, F = df(R)

|
Extra polarization: Scalaron /

. 1 o
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Choices for dominant Scalaron signal
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Conclusions

We studied SIGWs in various contexts, mainly: eMD to IRD transitions and those coming from PBH themselves.

We ve also worked to extend the usual GR formulation of SIGW and calculated them in f(R) gravity, thus

allowing direct gravitational theory probing.

In the cosmological models we studied, we uncovered interesting phenomenology which is potentially

detectable by future observations.

We also argued that even current observations can be explained by this portal, most notably the NANOgrav

signal by this no-scale construction.

In general, by harnessing this phenomenology we can learn new cosmological aspects as well as investigate

the gravitational theory directly.

Thank you!
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SUGRA

Supergravity (SUGRA) is a guantum field theory in which global supersymmetry has been promoted to a local

symmetry. Therefore, its gauging describes gravitation.

No-scale supergravity is a particular class of SUGRA which is characterized by the absence of any external scales,

hence its name every relevant energy scale is a function of M,,; only. Its significant perks include:

It has been explicitly demonstrated that it naturally arises as the low energy limit of superstring theory [Antoniadis,

Ellis, Floratos, Nanopoulos, Tomaras, PLB, 1987]

It cures the cosmological constant problem in the sense that it naturally providing vanishing cosmological constant at

the tree level [Cremmer, Ferrara, Kounnas, Nanopoulos, PLB, 1983]

Through its framework it can produce Starobinsky-like inflation, compatible with the Planck data [Ellis, Nanopoulos,

Olive, JCAP, 2013]

It can provide an efficient mechanism for reheating, the generation of neutrino masses and leptogenesis [Antoniadis,

Nanopoulos, Rizos, JCAP ,2021]



EXTRA application

We assumed the existence of a similar gas of PBHs and parametrizing via its {lpgy r and

Mppy and studied these SIGWs in the framework of f(R) gravity, with Starobinski
f(R) =R+ R?/6M"2 as a case study

[T. Papanikolaou, C. Tzerefos, S. Basilakos, E.N. Saridakis, JCAP, 2022]



SIGWs in Starobinski
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SIGWs in Starobinski
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Appendix: SU(5) flipped outline
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