Addressing the H_0 and S_8 Tensions in f(Q) Cosmology

Maria Petronikolou

IAASARS, National Observatory of Athens

NEB-21: Recent Developments in Gravity Hellenic Society for Relativity, Gravitation and Cosmology

Corfu, September 2, 2025

Overview

- 1. Current issues in Cosmology
- 2. The H_0 and S_8 tensions and Approaches to Resolve them
- 3. Addressing the H_0 and S_8 tensions in f(Q) cosmology
- 4. Conclusions

Current issues in Cosmology

 Λ CDM model: Cosmological constant Λ + Cold Dark Matter

 Open Issues: The Cosmological constant problem, origin and properties of dark energy and dark matter, exact mechanism for inflation, non-renormalizability of General Relativity, H₀ and S₈ tensions

- Planck Collaboration: Indirect measurements from the Cosmic Microwave Background (assuming the ΛCDM)
- **SH0ES Collaboration (R19)**: Direct measurements using Hubble Space Telescope observations of 70 long period Cepheids in the Large Magellanic Cloud.

- Planck Collaboration: Indirect measurements from the Cosmic Microwave Background (assuming the ΛCDM)
- **SH0ES Collaboration (R19)**: Direct measurements using Hubble Space Telescope observations of 70 long period Cepheids in the Large Magellanic Cloud.

Planck Collaboration

$$H_0 = 67.27 \pm 0.6 \text{ km/s/Mpc}$$

SH0ES Collaboration (R19)

$$\textit{H}_0 = 74.03 \pm 1.42~km/s/Mpc$$

- Planck Collaboration: Indirect measurements from the Cosmic Microwave Background (assuming the ΛCDM)
- **SH0ES Collaboration (R19)**: Direct measurements using Hubble Space Telescope observations of 70 long period Cepheids in the Large Magellanic Cloud.

Planck Collaboration

$$H_0 = 67.27 \pm 0.6 \text{ km/s/Mpc}$$

SH0ES Collaboration (R19)

$$\textit{H}_0 = 74.03 \pm 1.42~km/s/Mpc$$

Currently in tension at $\sim 5\sigma!$

Hubble Parameter: $H \equiv \dot{a}/a$, a: the scale factor

The discrepancy in the Hubble constant measurements by early observations (CMB, assuming ACDM) and late time model-independent methods

The S_8 tension

• The distribution of galaxies and matter in the late Universe's evolution, appears smoother than anticipated based on the evolution of fluctuations observed in the CMB.

$$S_8 = 0.834 \pm 0.016$$

LSS Surveys: KiDS-450, DES

$$S_8 = 0.745 \pm 0.039$$
 and $S_8 = 0.783^{+0.021}_{-0.025}$

The S_8 tension

 The distribution of galaxies and matter in the late Universe's evolution, appears smoother than anticipated based on the evolution of fluctuations observed in the CMB.

$$S_8 = 0.834 \pm 0.016$$

LSS Surveys: KiDS-450, DES
$$S_8 = 0.745 \pm 0.039$$
 and $S_8 = 0.783^{+0.021}_{-0.025}$

In tension at $\sim 2-3\sigma$!

 $S_8 = \sigma_8 (\Omega_{m0}/0.3)^{0.5}$: amplitude of matter clustering σ_8 : root mean square of the amplitude of matter perturbations flattened over $8h^{-1}$ Mpc h: Hubble constant in units of 100 km/s/Mpc

The S_8 tension

The discrepancy in the S_8 measurements by early and late Universe observations

CosmoVerse White Paper 2025

Approaches for Addressing the H_0 and S_8 tensions

Extensions/ modifications of the concordance cosmology

Alter the universe content and interactions GR: gravitational theory

Modify gravity, GR: as particular limit

f(Q) gravity

The total action of the theory is

$$S = -\frac{1}{2} \int d^4 x \sqrt{-g} f(Q) \tag{1}$$

- $\bullet \ \ Q = -\tfrac{1}{4} Q_{\alpha\beta\gamma} Q^{\alpha\beta\gamma} + \tfrac{1}{2} Q_{\alpha\beta\gamma} Q^{\gamma\beta\alpha} + \tfrac{1}{4} Q_{\alpha} Q^{\alpha} \tfrac{1}{2} Q_{\alpha} \tilde{Q}^{\alpha}$
- where $Q_{\alpha} \equiv Q_{\alpha}{}^{\mu}_{\mu}$, and $\tilde{Q}^{\alpha} \equiv Q_{\mu}{}^{\mu\alpha}$ are contractions of the non-metricity tensor: $Q_{\alpha\mu\nu} \equiv \nabla_{\alpha}g_{\mu\nu}$

(STEGR recovered: $f = Q/8\pi G$)

J. Beltrán Jiménez et al, Phys. Rev. D 101 (2020) no.10, 103507, arXiv:1906.10027

f(Q) Cosmology

We consider an expanding Universe, described by a flat homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry and given the field equations we obtain the modified Friedmann equations:

$$6f_Q H^2 - \frac{1}{2}f = \rho_m$$
(2)

$$(12H^2f_{QQ} + f_Q)\dot{H} = -\frac{1}{2}(\rho_m + p_m)$$
 (3)

where: $Q = 6H^2$, $H \equiv \dot{a}/a$.

For $f(Q) = Q - 2\Lambda$, we recover Λ CDM

f(Q) Cosmology

At the perturbation level for a general f(Q) form we obtain

$$\delta'' + \mathcal{H}\delta' = \frac{4\pi G \rho_m}{f_O} \delta \tag{4}$$

where

$$\delta = \delta \rho_m / \rho_m$$
: matter overdensity $\mathcal{H} = a'/a = aH$ and $f_Q = \partial f/\partial Q$

The effective Newton's constant is given by

$$G_{\rm eff} \equiv \frac{G}{f_O} \tag{5}$$

Addressing H_0 and S_8 tensions

C. G. Boiza, M. Petronikolou, M. Bouhmadi-Lopez, E.N. Saridakis, arXiv:2505.18264

We explore the observational implications of 3 specific f(Q) forms

$$f_1(Q) = Q \exp\{(\lambda Q_0/Q)\}$$

$$f_2(Q) = Q + Q_0 \exp\{(-\lambda Q_0/Q)\}$$
(6)

$$f_3(Q) = Q + \lambda Q_0[1 - \exp\{(-Q_0/Q)\}] \tag{8}$$

$$i3(\mathbf{Q}) = \mathbf{Q} + \lambda \mathbf{Q}_0[\mathbf{1} - \exp\{(-\mathbf{Q}_0/\mathbf{Q})\}] \tag{6}$$

Setting z=0, $(H=H_0)$, in the Friedmann eqs., the λ parameter for each model is given by:

- $\lambda = 0.5 + \mathcal{W}_0 \left(-\frac{\Omega_{m0}}{2\sqrt{e}} \right)$
- ullet $\lambda=0.5-\mathcal{W}_0\left[-rac{\sqrt{e}}{2}(\Omega_{m0}-1)
 ight]$
- $\lambda = \frac{e}{1+e}(1-\Omega_{m0})$

where \mathcal{W}_0 is the principal branch of the Lambert function and Ω_{m0} the present matter density parameter

Data and Methodology

We perform likelihood analysis using Markov Chain Monte Carlo (MCMC)

Data sets:

- Combination I: Cosmic chronometers (CC), supernovae (SNIa) and Gamma-ray bursts (GRB), with $\theta = \{H_0, \Omega_{m0}\}$
- Combination II: Baryon acoustic oscillations (BAO) and Redshift-space distortions (RSD), with $\theta = \{\Omega_{m0}, S_8\}$
- Combination III: CC + SN + GRB + BAO + RSD (Full combination), with $\theta = \{H_0, \Omega_{m0}, r_d, S_8\}$

where
$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

Results: Combinations I (CC + SN + GRB) & II (BAO + RSD)

Figure: Two-dimensional posterior distributions for the f (Q) models and Λ CDM scenario. The contours correspond to the 68% and 95% confidence levels (C.L.) in the Ω m0 - H0 plane

Results: Combination III (CC + SN + GRB + BAO + RSD)

Figure: Two-dimensional posterior distributions for the f(Q) models and ΛCDM scenario, using Combination III (CC + SN + GRB + BAO + RSD). The contours correspond to the 68% and 95% confidence levels (C.L.). 18/27

Parameter Estimation

Model	H_0	Ω_{m0}	r_d	S_8	$\Delta { m AIC}$
		CC + SN	V + GRB		
$f_3(Q)$	68.91 ± 1.90	0.3495 ± 0.0241	_	_	-0.23
$f_2(Q)$	69.20 ± 1.84	0.2616 ± 0.0160	_	_	1.67
$f_1(Q)$	68.76 ± 1.85	0.3497 ± 0.0200	_	_	0.17
ΛCDM	68.89 ± 1.86	0.3027 ± 0.0198	_	_	_
		BAO -	+ RSD		
$f_3(Q)$	_	0.3015 ± 0.0133	_	0.7206 ± 0.0285	2.63
$f_2(Q)$	_	0.3013 ± 0.0156	_	0.7856 ± 0.0294	0.51
$f_1(Q)$	_	0.2877 ± 0.0132	_	0.7270 ± 0.0263	2.30
ΛCDM	_	0.2937 ± 0.0142	_	0.7567 ± 0.0279	_
	(CC + SN + GRI	B + BAO + R	SD	
$f_3(Q)$	70.31 ± 1.71	0.3163 ± 0.0117	147.09 ± 3.49	0.7280 ± 0.0270	6.08
$f_2(Q)$	68.01 ± 1.67	0.2827 ± 0.0109	147.62 ± 3.46	0.7773 ± 0.0280	5.19
$f_1(Q)$	70.56 ± 1.69	0.3080 ± 0.0113	146.98 ± 3.43	0.7361 ± 0.0264	8.90
ΛCDM	69.15 ± 1.73	0.2958 ± 0.0115	147.33 ± 3.57	0.7580 ± 0.0271	_

 $AIC = -2 \ln L_{max} + 2k$, where L_{max} is the maximum likelihood of the model k is the number of free parameters

Combination I (CC + SN + GRB) and II (BAO + RSD)

Conclusions

• In this work, we explored f(Q) gravity, introducing late-time modifications that not only reproduce the observed cosmological behavior, but also show potential in alleviating the H_0 and S_8 tensions.

Conclusions

- In this work, we explored f(Q) gravity, introducing late-time modifications that not only reproduce the observed cosmological behavior, but also show potential in alleviating the H_0 and S_8 tensions.
- Key findings from dataset analysis:
 - Models 1 & 3 favor higher Ω_{m0} in background probes, H_0 increases when all datasets are combined.
 - Model 2 favors lower Ω_{m0} , shows suppressed growth and $G_{eff} < G$, potentially addressing S_8 tension.

Conclusions

- In this work, we explored f(Q) gravity, introducing late-time modifications that not only reproduce the observed cosmological behavior, but also show potential in alleviating the H_0 and S_8 tensions.
- Key findings from dataset analysis:
 - Models 1 & 3 favor higher Ω_{m0} in background probes, H_0 increases when all datasets are combined.
 - Model 2 favors lower Ω_{m0} , shows suppressed growth and $G_{eff} < G$, potentially addressing S_8 tension.
- Future work: Incorporate additional probes (e.g. CMB) and explore more flexible f(Q) functional forms.

Thank you for your attention!

Appendix

Evolution of Geff/G

AIC (Akaike Information Criterion)

Interpretation of AIC values based on Jeffreys' scale.

$\Delta { m AIC}$	Interpretation		
> 10	Desively disfavoured		
$5 \sim 10$	Strongly disfavoured		
$2 \sim 5$	Moderately disfavoured		
$-2 \sim 2$	Compatible		
$-5 \sim -2$	Moderately favoured		
$-10 \sim -5$	Strongly favoured		
< -10	Decisively favoured		

Field Equations

$$\frac{2}{\sqrt{-g}} \nabla_{\alpha} \left\{ \sqrt{-g} g_{\beta\nu} f_{Q} \left[-\frac{1}{2} L^{\alpha\mu\beta} + \frac{1}{4} g^{\mu\beta} \left(Q^{\alpha} - \tilde{Q}^{\alpha} \right) \right. \right. \\
\left. -\frac{1}{8} \left(g^{\alpha\mu} Q^{\beta} + g^{\alpha\beta} Q^{\mu} \right) \right] \right\} \\
+ f_{Q} \left[-\frac{1}{2} L^{\mu\alpha\beta} - \frac{1}{8} \left(g^{\mu\alpha} Q^{\beta} + g^{\mu\beta} Q^{\alpha} \right) \right. \\
\left. + \frac{1}{4} g^{\alpha\beta} \left(Q^{\mu} - \tilde{Q}^{\mu} \right) \right] Q_{\nu\alpha\beta} + \frac{1}{2} \delta^{\mu}_{\nu} f = T^{\mu}_{\nu}, \tag{9}$$

where $L^{lpha}{}_{\mu
u}\equiv {1\over 2}Q^{lpha}{}_{\mu
u}-Q^{lpha}{}_{(\mu
u)}$ is the disformation tensor, and $T^{\mu}{}_{
u}$ is the standard energy–momentum tensor.