Addressing the H_0 and S_8 Tensions in f(Q) Cosmology #### Maria Petronikolou IAASARS, National Observatory of Athens #### NEB-21: Recent Developments in Gravity Hellenic Society for Relativity, Gravitation and Cosmology Corfu, September 2, 2025 #### Overview - 1. Current issues in Cosmology - 2. The H_0 and S_8 tensions and Approaches to Resolve them - 3. Addressing the H_0 and S_8 tensions in f(Q) cosmology - 4. Conclusions ## Current issues in Cosmology Λ CDM model: Cosmological constant Λ + Cold Dark Matter Open Issues: The Cosmological constant problem, origin and properties of dark energy and dark matter, exact mechanism for inflation, non-renormalizability of General Relativity, H₀ and S₈ tensions - Planck Collaboration: Indirect measurements from the Cosmic Microwave Background (assuming the ΛCDM) - **SH0ES Collaboration (R19)**: Direct measurements using Hubble Space Telescope observations of 70 long period Cepheids in the Large Magellanic Cloud. - Planck Collaboration: Indirect measurements from the Cosmic Microwave Background (assuming the ΛCDM) - **SH0ES Collaboration (R19)**: Direct measurements using Hubble Space Telescope observations of 70 long period Cepheids in the Large Magellanic Cloud. #### **Planck Collaboration** $$H_0 = 67.27 \pm 0.6 \text{ km/s/Mpc}$$ #### SH0ES Collaboration (R19) $$\textit{H}_0 = 74.03 \pm 1.42~km/s/Mpc$$ - Planck Collaboration: Indirect measurements from the Cosmic Microwave Background (assuming the ΛCDM) - **SH0ES Collaboration (R19)**: Direct measurements using Hubble Space Telescope observations of 70 long period Cepheids in the Large Magellanic Cloud. #### Planck Collaboration $$H_0 = 67.27 \pm 0.6 \text{ km/s/Mpc}$$ #### SH0ES Collaboration (R19) $$\textit{H}_0 = 74.03 \pm 1.42~km/s/Mpc$$ #### Currently in tension at $\sim 5\sigma!$ Hubble Parameter: $H \equiv \dot{a}/a$, a: the scale factor The discrepancy in the Hubble constant measurements by early observations (CMB, assuming ACDM) and late time model-independent methods ### The S_8 tension • The distribution of galaxies and matter in the late Universe's evolution, appears smoother than anticipated based on the evolution of fluctuations observed in the CMB. $$S_8 = 0.834 \pm 0.016$$ LSS Surveys: KiDS-450, DES $$S_8 = 0.745 \pm 0.039$$ and $S_8 = 0.783^{+0.021}_{-0.025}$ ### The S_8 tension The distribution of galaxies and matter in the late Universe's evolution, appears smoother than anticipated based on the evolution of fluctuations observed in the CMB. $$S_8 = 0.834 \pm 0.016$$ LSS Surveys: KiDS-450, DES $$S_8 = 0.745 \pm 0.039$$ and $S_8 = 0.783^{+0.021}_{-0.025}$ In tension at $\sim 2-3\sigma$! $S_8 = \sigma_8 (\Omega_{m0}/0.3)^{0.5}$: amplitude of matter clustering σ_8 : root mean square of the amplitude of matter perturbations flattened over $8h^{-1}$ Mpc h: Hubble constant in units of 100 km/s/Mpc #### The S_8 tension The discrepancy in the S_8 measurements by early and late Universe observations CosmoVerse White Paper 2025 # Approaches for Addressing the H_0 and S_8 tensions Extensions/ modifications of the concordance cosmology Alter the universe content and interactions GR: gravitational theory Modify gravity, GR: as particular limit # f(Q) gravity The total action of the theory is $$S = -\frac{1}{2} \int d^4 x \sqrt{-g} f(Q) \tag{1}$$ - $\bullet \ \ Q = -\tfrac{1}{4} Q_{\alpha\beta\gamma} Q^{\alpha\beta\gamma} + \tfrac{1}{2} Q_{\alpha\beta\gamma} Q^{\gamma\beta\alpha} + \tfrac{1}{4} Q_{\alpha} Q^{\alpha} \tfrac{1}{2} Q_{\alpha} \tilde{Q}^{\alpha}$ - where $Q_{\alpha} \equiv Q_{\alpha}{}^{\mu}_{\mu}$, and $\tilde{Q}^{\alpha} \equiv Q_{\mu}{}^{\mu\alpha}$ are contractions of the non-metricity tensor: $Q_{\alpha\mu\nu} \equiv \nabla_{\alpha}g_{\mu\nu}$ (STEGR recovered: $f = Q/8\pi G$) J. Beltrán Jiménez et al, Phys. Rev. D 101 (2020) no.10, 103507, arXiv:1906.10027 # f(Q) Cosmology We consider an expanding Universe, described by a flat homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry and given the field equations we obtain the modified Friedmann equations: $$6f_Q H^2 - \frac{1}{2}f = \rho_m$$ (2) $$(12H^2f_{QQ} + f_Q)\dot{H} = -\frac{1}{2}(\rho_m + p_m)$$ (3) where: $Q = 6H^2$, $H \equiv \dot{a}/a$. For $f(Q) = Q - 2\Lambda$, we recover Λ CDM # f(Q) Cosmology At the perturbation level for a general f(Q) form we obtain $$\delta'' + \mathcal{H}\delta' = \frac{4\pi G \rho_m}{f_O} \delta \tag{4}$$ where $$\delta = \delta \rho_m / \rho_m$$: matter overdensity $\mathcal{H} = a'/a = aH$ and $f_Q = \partial f/\partial Q$ The effective Newton's constant is given by $$G_{\rm eff} \equiv \frac{G}{f_O} \tag{5}$$ # Addressing H_0 and S_8 tensions C. G. Boiza, M. Petronikolou, M. Bouhmadi-Lopez, E.N. Saridakis, arXiv:2505.18264 We explore the observational implications of 3 specific f(Q) forms $$f_1(Q) = Q \exp\{(\lambda Q_0/Q)\}$$ $$f_2(Q) = Q + Q_0 \exp\{(-\lambda Q_0/Q)\}$$ (6) $$f_3(Q) = Q + \lambda Q_0[1 - \exp\{(-Q_0/Q)\}] \tag{8}$$ $$i3(\mathbf{Q}) = \mathbf{Q} + \lambda \mathbf{Q}_0[\mathbf{1} - \exp\{(-\mathbf{Q}_0/\mathbf{Q})\}] \tag{6}$$ Setting z=0, $(H=H_0)$, in the Friedmann eqs., the λ parameter for each model is given by: - $\lambda = 0.5 + \mathcal{W}_0 \left(-\frac{\Omega_{m0}}{2\sqrt{e}} \right)$ - ullet $\lambda=0.5-\mathcal{W}_0\left[- rac{\sqrt{e}}{2}(\Omega_{m0}-1) ight]$ - $\lambda = \frac{e}{1+e}(1-\Omega_{m0})$ where \mathcal{W}_0 is the principal branch of the Lambert function and Ω_{m0} the present matter density parameter #### Data and Methodology We perform likelihood analysis using Markov Chain Monte Carlo (MCMC) #### Data sets: - Combination I: Cosmic chronometers (CC), supernovae (SNIa) and Gamma-ray bursts (GRB), with $\theta = \{H_0, \Omega_{m0}\}$ - Combination II: Baryon acoustic oscillations (BAO) and Redshift-space distortions (RSD), with $\theta = \{\Omega_{m0}, S_8\}$ - Combination III: CC + SN + GRB + BAO + RSD (Full combination), with $\theta = \{H_0, \Omega_{m0}, r_d, S_8\}$ where $$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$ # Results: Combinations I (CC + SN + GRB) & II (BAO + RSD) Figure: Two-dimensional posterior distributions for the f (Q) models and Λ CDM scenario. The contours correspond to the 68% and 95% confidence levels (C.L.) in the Ω m0 - H0 plane # Results: Combination III (CC + SN + GRB + BAO + RSD) Figure: Two-dimensional posterior distributions for the f(Q) models and ΛCDM scenario, using Combination III (CC + SN + GRB + BAO + RSD). The contours correspond to the 68% and 95% confidence levels (C.L.). 18/27 #### Parameter Estimation | Model | H_0 | Ω_{m0} | r_d | S_8 | $\Delta { m AIC}$ | |---------------|------------------|---------------------|-------------------|---------------------|-------------------| | | | CC + SN | V + GRB | | | | $f_3(Q)$ | 68.91 ± 1.90 | 0.3495 ± 0.0241 | _ | _ | -0.23 | | $f_2(Q)$ | 69.20 ± 1.84 | 0.2616 ± 0.0160 | _ | _ | 1.67 | | $f_1(Q)$ | 68.76 ± 1.85 | 0.3497 ± 0.0200 | _ | _ | 0.17 | | ΛCDM | 68.89 ± 1.86 | 0.3027 ± 0.0198 | _ | _ | _ | | | | BAO - | + RSD | | | | $f_3(Q)$ | _ | 0.3015 ± 0.0133 | _ | 0.7206 ± 0.0285 | 2.63 | | $f_2(Q)$ | _ | 0.3013 ± 0.0156 | _ | 0.7856 ± 0.0294 | 0.51 | | $f_1(Q)$ | _ | 0.2877 ± 0.0132 | _ | 0.7270 ± 0.0263 | 2.30 | | ΛCDM | _ | 0.2937 ± 0.0142 | _ | 0.7567 ± 0.0279 | _ | | | (| CC + SN + GRI | B + BAO + R | SD | | | $f_3(Q)$ | 70.31 ± 1.71 | 0.3163 ± 0.0117 | 147.09 ± 3.49 | 0.7280 ± 0.0270 | 6.08 | | $f_2(Q)$ | 68.01 ± 1.67 | 0.2827 ± 0.0109 | 147.62 ± 3.46 | 0.7773 ± 0.0280 | 5.19 | | $f_1(Q)$ | 70.56 ± 1.69 | 0.3080 ± 0.0113 | 146.98 ± 3.43 | 0.7361 ± 0.0264 | 8.90 | | ΛCDM | 69.15 ± 1.73 | 0.2958 ± 0.0115 | 147.33 ± 3.57 | 0.7580 ± 0.0271 | _ | $AIC = -2 \ln L_{max} + 2k$, where L_{max} is the maximum likelihood of the model k is the number of free parameters # Combination I (CC + SN + GRB) and II (BAO + RSD) #### Conclusions • In this work, we explored f(Q) gravity, introducing late-time modifications that not only reproduce the observed cosmological behavior, but also show potential in alleviating the H_0 and S_8 tensions. #### Conclusions - In this work, we explored f(Q) gravity, introducing late-time modifications that not only reproduce the observed cosmological behavior, but also show potential in alleviating the H_0 and S_8 tensions. - Key findings from dataset analysis: - Models 1 & 3 favor higher Ω_{m0} in background probes, H_0 increases when all datasets are combined. - Model 2 favors lower Ω_{m0} , shows suppressed growth and $G_{eff} < G$, potentially addressing S_8 tension. #### Conclusions - In this work, we explored f(Q) gravity, introducing late-time modifications that not only reproduce the observed cosmological behavior, but also show potential in alleviating the H_0 and S_8 tensions. - Key findings from dataset analysis: - Models 1 & 3 favor higher Ω_{m0} in background probes, H_0 increases when all datasets are combined. - Model 2 favors lower Ω_{m0} , shows suppressed growth and $G_{eff} < G$, potentially addressing S_8 tension. - Future work: Incorporate additional probes (e.g. CMB) and explore more flexible f(Q) functional forms. Thank you for your attention! # **Appendix** #### Evolution of Geff/G # AIC (Akaike Information Criterion) Interpretation of AIC values based on Jeffreys' scale. | $\Delta { m AIC}$ | Interpretation | | | |-------------------|------------------------|--|--| | > 10 | Desively disfavoured | | | | $5 \sim 10$ | Strongly disfavoured | | | | $2 \sim 5$ | Moderately disfavoured | | | | $-2 \sim 2$ | Compatible | | | | $-5 \sim -2$ | Moderately favoured | | | | $-10 \sim -5$ | Strongly favoured | | | | < -10 | Decisively favoured | | | | | | | | ### Field Equations $$\frac{2}{\sqrt{-g}} \nabla_{\alpha} \left\{ \sqrt{-g} g_{\beta\nu} f_{Q} \left[-\frac{1}{2} L^{\alpha\mu\beta} + \frac{1}{4} g^{\mu\beta} \left(Q^{\alpha} - \tilde{Q}^{\alpha} \right) \right. \right. \\ \left. -\frac{1}{8} \left(g^{\alpha\mu} Q^{\beta} + g^{\alpha\beta} Q^{\mu} \right) \right] \right\} \\ + f_{Q} \left[-\frac{1}{2} L^{\mu\alpha\beta} - \frac{1}{8} \left(g^{\mu\alpha} Q^{\beta} + g^{\mu\beta} Q^{\alpha} \right) \right. \\ \left. + \frac{1}{4} g^{\alpha\beta} \left(Q^{\mu} - \tilde{Q}^{\mu} \right) \right] Q_{\nu\alpha\beta} + \frac{1}{2} \delta^{\mu}_{\nu} f = T^{\mu}_{\nu}, \tag{9}$$ where $L^{lpha}{}_{\mu u}\equiv {1\over 2}Q^{lpha}{}_{\mu u}-Q^{lpha}{}_{(\mu u)}$ is the disformation tensor, and $T^{\mu}{}_{ u}$ is the standard energy–momentum tensor.