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Extreme Mass Ratio Inspirals

EMRIs: binaries involving a
stellar-mass compact object and
a supermassive BH.

Mass ratio: µ/M ∼ 10−7 − 10−4.

Gravitational waves: in the range
10−4 − 10−1 Hz, prime targets
of LISA.

Adiabatic approximation:
the influence of gravitational
back-reaction become significant on
timescales much longer than any orbital timescale.

short-timescales: nearly geodesic motion
long-timescales: the system evolves through a sequence of geodesics
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The Johannsen metric

We assume that the spacetime geometry of the central BH is described
by the metric derived by Johannsen, [PRD 88 044002 (2013)].

In Boyer-Lindquist-like coordinates (t, r, θ, ϕ):

ds2 =− Σ̃[∆− a2A2(r)
2 sin2 θ]

[(r2 + a2)A1(r)− a2A2(r) sin
2 θ]2

dt2

− 2a
[(r2 + a2)A1(r)A2(r)−∆]Σ̃ sin2 θ

[(r2 + a2)A1(r)− a2A2(r) sin
2 θ]2]2

dtdϕ

+
Σ̃

∆A5(r)
dr2 + Σ̃dθ2

+
Σ̃ sin2 θ[(r2 + a2)2A1(r)

2 − a2∆sin2 θ]

[(r2 + a2)A1(r)− a2A2(r) sin
2 θ]2

dϕ2,

∆ = r2 + a2 − 2Mr, Σ̃ = r2 + a2 cos2 θ + f(r).

where a,M are still the spin and the mass of the BH.
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Johannsen...

The deviation functions A1, A2, A5, f are given as a power series in M/r:

A1(r) = 1 +

∞∑
n=3

a1n

(
M

r

)n

, A2(r) = 1 +

∞∑
n=2

a2n

(
M

r

)n

,

A5(r) = 1 +
∞∑

n=2

a5n

(
M

r

)n

, f(r) = 0 +

∞∑
n=3

ϵnr
2

(
M

r

)n

.

It reduces smoothly to the Kerr metric if A1(r) = A2(r) = A5(r) = 1,
and f(r) = 0.

The metric is stationary, axisymmetric, reflection symmetric along the
equatorial plane and asymptotically flat, but not a vaccuum solution.

It is actually not a solution to the field equations of any particular
gravity theory. It is simply an artificial variation of Kerr that keeps all
its symmetries.

4 / 20



Integrability-Separability

The Johannsen metric possesses three independent and involution
exact constants of motion (besides the rest mass µ), like Kerr:

E = −pt

Lz = pϕ

Q = p2θ + cos2 θ

[
a2(µ2 − E2) +

L2
z

sin2 θ

]
= −∆p2rA5(r) +

[(r2 + a2)EA1(r)− aLzA2(r)]
2

∆

− (Lz − aE)2 − µ2[r2 + f(r)].

The H-J equations are fully separable in all coordinates. Therefore we
could formulate the equations of motion as 1st order diff. eqs. (like in
Kerr):

µΣ̃
dr

dτ
= ±

√
A5(r)R(r),

µΣ̃
dθ

dτ
= ±

√
Θ(θ),

where

R(r) = [E(r2 + a2)A1(r)− aLzA2(r)]
2 −∆(µ2[r2 + f(r)] + [Lz − aE)2 +Q],

Θ(θ) = Q− cos2 θ

[
a2(µ2 − E2) +

L2
z

sin2 θ

]
.
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Bound orbits

a = 0.85, M = 1, a13 = −1.5, a22 = 4, a52 = 6, and ϵ3 = 4.
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Fundamental frequencies [AE et al,PRD 110.124004]

By analyzing the geodesic dynamics in action-angle variables we obtain the
3 fundamental frequencies:

Ωr =
πK(k)

a2z+[K(k)− E(k)]X + Y K(k)

for radial oscillations (eccentric orbits)

Ωθ =
πβ

√
z+X/2

a2z+[K(k)− E(k)]X + Y K(k)

for oscillations about the equator (non-planar orbits)

Ωϕ =
ZK(k) +XLz[Π(z−, k)−K(k)]

a2z+[K(k)− E(k)]X + Y K(k)

rotations around the axis of symmetry (orbital winding).
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...the elliptic integrals involved

The K(k), E(k) and Π(z−, k) are the 1st, 2nd and 3rd complete elliptic
integrals:

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

,

E(k) =

∫ π
2

0

√
1− k2 sin2 θ dθ,

Π(z−, k) =

∫ π
2

0

dθ

(1− z− sin2 θ)
√

1− k2 sin2 θ
,

with z = cos2 θ, k =
√

z−/z+ (where z± are the two roots of Θ(z) = 0 with
0 < z− = cos2 θmin < 1 < z+), while β2 = a2(1− E2).
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...the integrals related to r-oscillations

The Y , Z and X are the radial integrals:

Y =

∫ r1

r2

r2 + f(r)√
A5(r)R(r)

dr

Z =

∫ r1

r2

aA2(r)((r
2 + a2)A1(r)E − aA2(r)Lz) + ∆(Lz − aE)

∆
√

A5(r)R(r)
dr

X =

∫ r1

r2

dr√
A5(r)R(r)

,

where r1(apastron) and r2(periastron) are the turning points of the radial
motion, i.e. R(r1) = R(r2) = 0.
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Kennefick and Ori argument [Phys.Rev.D 53 (1996) 4319-4326]

The rate of change of Q has the “appropriate” form so that spherical
orbits remain spherical at adiabatic order so long as the self-force does
not resonate with the radial oscillations.

At the adiabatic limit, radiation reaction drives a particle in spherical
motion around a Kerr BH through successively damped spherical
geodesics.

The periodicity of the GSF for a spherical orbit is determined by the
polar motion and due to the reflection symmetry of the metric, the
frequency of GSF is twice the polar frequency. Thus the only
assumption for this stability to hold is the fact that there is no
resonance of the form

Ωr

Ωθ
= 2n, n = 1, 2, . . .

for some integer n.

In Kerr case the resonance condition is never met, for any generic orbit.

Ωr

Ωθ
< 1.
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Resonance Condition

Resonance condition: Ωr/Ωθ = 2.

This is satisfied when: β
√
z+X = K(k),

Deviation functions:

A1(r) = 1 + a13
M3

r3
, A2(r) = 1 + a22

M2

r2
, f(r) = ϵ3

M3

r
and

A5(r) = 1 + a52
M2

r2
,

eccentricity: e = r1−r2
r1+r2
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Spherical orbits at Resonance

a = 0.85M , µ/M = 10−6, a13 = −1.5, a22 = 4, a52 = 6 and ϵ3 = 4.

The volume of the parameter space where bound geodesic motion
occurs can be significantly larger. Consequently, the resonant condition
could be satisfied.

The resonance Ωr/Ωθ = 2 is present in this specific Johannsen metric.
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Adiabatic evolution

The orbital evolution is computed, based on the average losses due to
radiation reaction, since we do not have an exact formulae for the GSF
in non Kerr spacetimes.

Average losses of E and Lz are computed from the hybrid kludge
scheme (Gair & Glampedakis, 2006) which combines exact expressions
for the evolution of the orbital elements with a second order
Post-Newtonian radiation reaction formulae for the “constants” of
motion fluxes.

We integrate the geodesic equations

d2xµ

dτ2
+ Γκ

λν(E,Lz)
dxλ

dτ

dxν

dτ
= 0

for small interval of time compared to the radiation reaction timescale,
assuming a linear evolution of E and Lz:

E(t) = E0 + ⟨ dE

dt
⟩
∣∣∣∣
0

t,

Lz(t) = Lz,0 + ⟨ dLz

dt
⟩
∣∣∣∣
0

t.
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Results I. Integrable EMRIs.

a = 0.85M , µ/M = 10−6, a13 = −1.5, a22 = 4, a52 = 6 and ϵ3 = 4.
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Results II. Integrable EMRIs.

a = 0.85, µ/M = 10−6, a13 = −1.5, a22 = 4, a52 = 6, and ϵ3 = 4.
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Non-Integrable spacetime

By adding the deformation parameter aQ [KD et al. PRD 102, 064041

(2020)], that breaks the integrability of geodesics, the Johannsen metric
becomes:

ds2 =− Σ̃[M3(aQ/r) + ∆− a2A2(r)
2 sin2 θ]

[(r2 + a2)A1(r)− a2A2(r) sin
2 θ]2

dt2

− 2a
[(r2 + a2)A1(r)A2(r)−∆]Σ̃ sin2 θ

[(r2 + a2)A1(r)− a2A2(r) sin
2 θ]2]2

dtdϕ

+
M3(aQ/r) + Σ̃

∆A5(r)
dr2 + Σ̃dθ2

+
Σ̃ sin2 θ[(r2 + a2)2A1(r)

2 − a2∆sin2 θ]

[(r2 + a2)A1(r)− a2A2(r) sin
2 θ]2

dϕ2,
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Results III. Non-Integrable EMRIs.

a = 0.85, µ/M = 10−6, a13 = −1.5, a22 = 4, a52 = 6, and ϵ3 = 4.
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Figure 1: left fig. aQ = 10−3, right fig aQ = 10−2
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Gravitational Waves

Waveform modelling: We use the numerical kludge scheme that
combines exact particle trajectories with approximate GW radiation
emission [Babak et al., PRD 75, 024005 (2007)].

Quadrupole formula: hTT
ij = 2

D

d2I
(STF )
ij

dt2
.

GW components: h+,× = 2µ
D
ϵ+,×
ij

[
d2Zi(t)

dt2
Zj(t) + dZi(t)

dt
dZj(t)

dt

]
,

Total GW waveform detected by LISA:

ha =
√
3

2
[F+

a (t)h+(t) + F−
a (t)h−(t), where a = {I, II} the channel

indices of the detector’s antenna.

Assumptions:
the noise is stationary and Gaussian with zero mean.
The two data streams sectors are uncorrelated.
The noise power spectral density of LISA Sn(f) is equivalent at both
channels.
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Spectograms
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Conclusions

The Kennefick-Ori statement is verified in practice.

The eccentricity of an orbit (in such a non-Kerr metric) could rise
abruptly during the evolution of the orbit.

However, this rise is small (at least for the Johannsen metric we used).
It is of order 10−3 at most.

The passage through a resonance could be double, and the second
change of eccentricity is sometimes negative.

We have checked that the change in eccentricity, when the initial
eccentricity is not 0, is still small.

The frequency evolution of an incoming GW contains a clear imprint of
eccentricity excitation when the Ωr/Ωθ = 2 resonance is crossed by an
initially spherical orbit.
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