High-frequency linear accelerators for societal and medical applications

.

Alessandra M Lombardi (BE-ABP-HSL)

multicity (18)

Outline

Highlight of Linac 4 (2006-2020)

R&D on LINAC4 was applied in medical and societal projects

LIGHT: 750MHz RFQ for medical protons (2015-2017)

ELISA-MACHINA : 750 MHZ RFQ for societal use (2017-2022)

HELIUM and Fully stripped Carbon: 750 MHZ RFQ for carbon ion (about to be tested)

CERN ACCELERATOR COMPLEX

The big picture : LHC Luminosity

Commissioning in stages of increased energy

Innovations in LINAC4

3 MeV/ 352 MHz/ 3 m long RFQ Commissioned with beam 2013 Experience used for design of equivalent Radio Frequency Quadrupole for medical and societal applications

Fast chopper, validated 2013 Risetime<10nsec/ extinguish factor 100%

PMQ for tank2 , 60 mm in diameter and 80 mm in length **Produced in European industry for the first time**

LIGHT pre-injector

2015 - CONSTRUCTION

Source and RFQ parameters		
RF Frequency	750 MHz	
Input	40 keV	
Output Energy	5 MeV	
Length	2m	
Vane voltage	65kV	
Peak RF power	400kW	
Duty cycle / max	0.4% /(5%max)	
Input/Output Pulse Current in 3GHz acceptance	100/30 μA	
Transv. emittance 90%	0.1 pi mm mrad	
Average aperture (r0)	2mm	
Maximum modulation	3	

March 15 - Machining (±10 µm)

June 15 - First brazing

May 15- Assembling (±15 μm)

October 15 – Second brazing

03/04/2025

ALESSANDRA LOMBARDI (CERN)

Linac for Image Guided Hadron Therapy

2016 : assembly, tuning and high power RF

RF measurements

Ready for beam tests

2017 : proton beam at SA2

LOW ENERGY PRE-INJECTOR for ADAM/AVO test facility at SA2

Diagnostic Bei

MEBT

REQ

Radically new design from the beam dynamics point of view-validated by beam measurements. It build on the experience of the LINAC4 RFQ for RF design and mechanical design.

Built in the CERN workshop : less than 2 years from start of construction to installation, this included RF tuning.

A copy is built in industry.

Foundation for 4 other RFQs

Copy for medical facility: Built in Italian industry, First beam July21

ortuga

Spain

Bosnia and Herzegovina

Croatia

Redesigned for portability:

ELISA (2022 science gateway)

The MACHINA (PIXE-RFQ) Project

Technical Design Report

03/04/2025

ALESSANDRA LOMBARDI (CERN)

Belgiu

France

ndorr

Palma

The MACHINA (PIXE-RFQ) Project Technical Design ali Report

INFN

MACHINA

	Source and RFQ parameters	
16	RF Frequency	750 MHz
	Input	20 keV
	Output Energy	2 MeV
T	Length	1m
-	Vane voltage	35kV
F	Peak RF power	100kW
-	Duty cycle / max	0.4% /(5%max)
	Input/Output Pulse Current in 3GHz acceptance	100/30 μA
in the second	Transv. emittance 90%	0.1 pi mm mrad
12.1	Average aperture (r0)	1.4 mm
	Maximum modulation	2.8

Laboratorio di tecniche nucleari per l'Ambiente e i **Be**ni **C**ulturali INFN e Dipartimento di Fisica e Astronomia dell'Università di Firenze

MACHINA 28Apr22 (002)

Light from the Bragg peak at 2 MeV (measured at CERN).

The 2 MeV proton beam downstream of the RFQ exit port

technology

0.5 m Desired HE Beamline lenght Alessandra Lombardi (CERN)

From simulations :

75 cm beamline after the RFQ + 2 PMQ 40 T/m

 \Rightarrow Beam spot size on sample \sim 400 μm

40 cm beamline after the RFQ + 2 PMQ 80 T/m

 \Rightarrow Beam spot size on sample ~ 400 μ m

Where can we go? with 2 PMQ 80 T/m, we could have a \Rightarrow beam spot size on sample of ~35 µm with 2 PMQ 90 T/m, we could have a \Rightarrow beam spot size on sample of ~20 µm

technology

⇒⇒

First extracted beam

PMQ adjusted

BEAM

First extracted beam

PMQ roughly optimised

First extracted beam

PMQ roughly optimised

BEAM

First extracted beam

technology

playing with the PMQ

ELISA

Experimental Linac for Surface Analysis

A miniature proton accelerator for Science Gateway

ALESSANDRA LOMBARDI (CERN)

NEXT challenge : accelerate Carbon in a LINAC

I - Source of fully stripped carbon ion with sufficient quality for use in a medical facility

3- LINAC with a "hospital-friendly" footprint, adaptable to existing buildings and allowing intermediate station for e.g. Radioisotope production

Centro de Investigaciones

ergiticas, Medicambientale

y Tecnológicas

MINISTERIO

DE CIENCIA

E INNOVACIÓN

2- An efficient and easy to use pre-injector

Bent linac

Collaboration CERN-CIEMAT-CDTI-Spanish Industry – RadioFrequencyQuadrupole

RFQ - 2.5 m - Helium from 0.015 to 2.5 MeV/u

Source 1 – NEC –low intensity protons

• Two innovative extractions:

- "Extract and match"
- "fast extraction and gridded lens"

Commercial source – probe extractionwith company-furnished extraction, the nominal current is around 20µA

Details on the two extractions and expectations 1/2

- 3 power supplies and 26 cm from the source plasma chamber to the RFQ matching plane
- Limited flexibility in matching (source needs to be commissioned in standalone mode)
- Guaranteed best beam quality as limit the manipulations on a low-energy beam. This is extended to high intensity.
 -still some teething problems with alignment and spot size...

geometry

ALESSANDRA LOMBARDI (CERN)

Details on the two extractions and expectations 2/2

- 4 power supplies and 70 cm from the source plasma chamber to the RFQ matching plane
- Full flexibility in matching
- Possible emittance growth in the Einzel lens for higher intensity

Source 2 - Mono1000 ECR

- Simulation of the present extraction
- Revamping the source used with the ADAM RFQ

source simulations-electrostatic field calculations

Matching source beam to the RFQ

Measurement

Source standalone

Proton energy 15KeV

Intensity 100µA

Can go to 1mA

Big beam Lens >12kV

Source 2 - Mono1000 ECR

- Assembled with the RFQ
- Faraday CUP at the entrance and at the exit of the RFQ •
- 110uA for 10W in the source /90nA at the output of the RFQ unpowered
- 300uA for 20W in the source •
- Beam went through the RFQ unpowered and was stereed

Low energy Faraday cup 110uA/10W

Source 3 : Pantechnik supernanogun for UNSA- being assembled

Source 3 – supernanogun

- Assembled in building 2250
- All power supplies tested with cosylab controls, rf amplifier next

Future plans

We have in the test area

- A proton source designed to inject DIRECTLY into the RFQ -
- A helium source + a Low Energy Beam Transport designed to match a helium beam to the RFQ acceptance
- 750 MHz RFQ designed to accelerate from 15keV/ to 2.5 MeV/u particles with q/m =1/2

We will then

- Characterize the proton and helium sources for use with the RFQ and accelerate the beam through the Carbon RFQ
- Validate (hopefully) the 750 MHz RFQ design and proceed to the construction of the second RFQ to bring the beam to 5MeV/u

Test stand at building 2250

- Ideal test bed for small accelerators for societal applications
- Proton therapy and art diagnostics is demonstrated, next challenges are helium/carbon ions and radioisotope productions, in line with IFIGENIA