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Introduction & Motivations

Binary and multi-black hole systems are acquiring more relevance in the under-
standing of the large scale structure and interactions of our universe, because
gravitational waves observations. Anyway no exact analytical solution in GR
are known.

These systems generally are not isolated but they belong to larger gravitational
structures such as galaxies, or clusters of galaxies which contribute to deform
the gravitational field around the black holes and also the behaviour at large
distances.

¿Is it possible to have multi black hole (at equilibrium) in pure GR? The
double Kerr or the Israel-Khan solutions suffer from conical singularities which
are not physical because are they are divergences in the spacetime, violate
energy conditions and there are no observational nor experimental traces of
their plausibility at the moment.

Can the introduction of the external gravitational field help to fix these issues?
Can we regularise these multi-black hole metrics from conical singularities and
describe an realistic setting for binary black hole models? Surely we can, at
least, circumvent the Israel theorem about black hole uniqueness.
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The multipolar gravitational background

The background can be written as a Weyl metric:

ds
2

= −e2ψ(ρ,z)
dt

2
+ e
−2ψ(ρ,z)[

e
2γ(ρ,z)

(dρ
2

+ dz
2
) + ρ

2
dφ

2]
,

with

ψ =

∞∑
n=1

(
an

rn+1
+ bnr

n
)
Pn ,

γ =
∞∑

n,p=1

[
(n+ 1)(p+ 1)anap

(n+ p+ 2)rn+p+2
(Pn+1Pp+1 − PnPp) +

npbnbpr
n+p

n+ p
(PnPp − Pn−1Pp−1)

]
,

r :=

√
ρ2 + z2 asymptotic radial coordinate and Pn(z/r) Legendre polynomials

an describe the deformations of the source, bn the external gravitational field
whose distribution of matter located at large r.

The internal and external multipole momenta Qint
i , Qext

i

Qint
0 = 0 , Qint

1 = −a1 , Qint
2 = −a2 , Qint

3 = −a3

Qext
0 = 0 , Qext

1 = −b1 , Qext
2 = −b2 , Qext

3 =
b31
3
− b3 . (1)
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Rod representation & solitons

Flat space gab = diag(−1, ρ2) Rindler gab = diag(−µ1, ρ
2/µ1)

z

t

φ

w1 z

t

φ

Schwazschild gab = diag
(
−µ1
µ2
, ρ2

µ2
µ1

)
µk(ρ, z) = wk − z +

√
ρ2 + (z − wk)2

w1 w2 z

t

φ

C-metric gab = diag

(
−µ1µ3

µ2
,
ρ2µ2
µ1µ3

)

w1 w2 w3 z

t

φ

Binary Black Hole gab = diag
(
−µ1µ3
µ2µ4

, ρ2
µ2µ4
µ1µ3

)

w1 w2 w3 w4 z

t

φ
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Array of N black holes in an external gravitational field

w1 w2 w3 w2N−2 w2N−1 w2N z

t

φ

Each couple of solitons adds a black hole, then the addition of 2N solitons gives
rise to a spacetime containing N black holes, whose metric is

ds
2

= f(ρ, z)(dρ
2

+ dz
2
) + gab(ρ, z)dx

a
dx
b
,

gab = diag

[
−
∏N
k=1 µ2k−1∏N
l=1 µ2l

exp

(
2

∞∑
n=1

bnr
n
Pn

)
, ρ

2
∏N
l=1 µ2l∏N

k=1 µ2k−1

exp

(
−2

∞∑
n=1

bnr
n
Pn

)]
,

f = 16Cff0

( N∏
k=1

µ
2N+1
2k

µ
2N−1
2k−1

)( 2N∏
k=1

1

ρ2 + µ2
k

)( 2N−1∏
k=1,l=1,3,···

1

(µk − µk+l)
2

)

×
( 2N−2∏
k=1,l=2,4,···

1

(ρ2 + µkµk+l)
2

)
exp

[
2

2N∑
k=1

(−1)
k+1

F (ρ, z, µk)

]
.

F (ρ, z, λ) = 2

∞∑
n=1

bn

[∞∑
l=0

(n
l

)(−ρ2
2λ

)l(
z+

λ

2

)n−l
−
n∑
l=1

[(n−l)/2]∑
k=0

(−1)k+l2−2k−ln!λ−l

k!(k + l)!(n− 2k − l)!
ρ2(k+l)

z2k+l−n

]
.
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Array of N black holes in an external gravitational field

w1 w2 w3 w2N−2 w2N−1 w2N z

t

φ

Each couple of solitons adds a black hole, then the addition of 2N solitons gives
rise to a spacetime containing N static black holes, whose metric is

ds
2

= f(ρ, z)(dρ
2

+ dz
2
) + gab(ρ, z)dx

a
dx
b
,

gab = diag

[
−
∏N
k=1 µ2k−1∏N
l=1 µ2l

exp

(
2
∞∑
n=1

bnr
n
Pn

)
, ρ

2
∏N
l=1 µ2l∏N

k=1 µ2k−1

exp

(
−2
∞∑
n=1

bnr
n
Pn

)]
,

f = 16Cff0

( N∏
k=1

µ
2N+1
2k

µ
2N−1
2k−1

)( 2N∏
k=1

1

ρ2 + µ2
k

)( 2N−1∏
k=1,l=1,3,···

1

(µk − µk+l)
2

)

×
( 2N−2∏
k=1,l=2,4,···

1

(ρ2 + µkµk+l)
2

)
exp

[
2

2N∑
k=1

(−1)
k+1

F (ρ, z, µk)

]
.

The 2N parameters are related to the mass mi and position zi of the N black hole:

w1 = z1 −m1 , w2 = z1 +m1 , . . . w2N−1 = zN −mN , w2N = zN +mN .
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Conical singularities and regularisation

Multipole momenta bn allow to remove the conical singularities from the metric
requiring P ≡ fgtt → 1 as ρ→ 0 between the k-th and (k + 1)-th rod
(w2k < z < w2k+1), for 1 ≤ k < N .

Cf = 2
2(2N+1)

[ N∏
i=1

(w2i−w2i−1)
2
][N−1∏

k=1

N−k∏
j=1

(w2k−1−w2k+2j)
2
(w2k−w2k+2j−1)

2
]
.

Pk = fgtt =

[ 2k∏
i=1

2N∏
j=2k+1

(wj−wi)
2 (−1)i+j+1

]
exp

[
4

∞∑
n=1

bn

2N∑
j=2k+1

(−1)
j+1

w
n
j

]
,

while in the region z > w2N PN = 1 and for z < w1

P0 = exp

[
4

∞∑
n=1

bn

2N∑
j=1

(−1)
j+1

w
n
j

]
,

φ

w1
w2 w3 w4 w5 zw6

Figure: Embedding diagram in E3 of the surfaces of three collinear black hole event
horizons for the parametric values w1 = 1, w2 = 12/5, w3 = 3, w4 = 22/5, w5 = 5,
w6 = 32/5
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N = 1 Distorted Schwarzschild black hole

For N = 1 static black hole embedded in an external gravitational field

e
2ψ

= −
µ1
µ2

exp

(
2
∞∑
n=1

bnr
n
Pn

)
,

e
2γ

=
16 Cf f0 µ3

2 µ1 e2F (ρ,z,µ1)−2F (ρ,z,µ2)

(ρ2 + µ2
1)(ρ2 + µ2

2)(µ1 − µ2)2
.

Schwarzschild limit for bn = 0 ∀n.
Regularising constraints (((((((hhhhhhh

∑∞
n=1 b2n+1 = 0

Cf =
(w1 − w2)2

4
,

∞∑
n=1

bn
(
w
n
1 − w

n
2
)

= 0 .

φ

z

φ

z

Figure: Two embedding in E3 of single static black hole horizons (yellow surfaces)
immersed into a dipolar and quadrupolar external gravitational field, for m = 0.6,
z1 = −1.3, b2 = 0.3, expressed in Solar mass units M�. A section is taken to
appreciate the deformation with respect to the null external field case, drawn in green
as a reference: the standard spherical Schwarzschild horizon, which is everywhere
covered by the horizon swollen by the presence of the external gravitational field. The
two black holes in external field differ only for the value of b1, which in Fig. (b) is
chosen according to Eq. (5) to remove also the second conical singularity, while in
Fig. (a) b1 = 0.5.
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Fig. (a) b1 = 0.5.
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N = 2 Generating a Charged Binary Black Hole system

Seed: N = 2, multipolar generalisation of the Bach-Weyl solution

e
2ψ

=
µ1µ3
µ2µ4

exp

[
2b1z + 2b2

(
z
2 −

ρ2

2

)]
,

e
2γ

=
16Cf e

2ψ µ3
1µ

5
2µ

3
3µ

5
4

W11W22W33W44W
2
13W

2
24Y12Y14Y23Y34

exp

{
−b21ρ

2
+
b22
2

(
ρ
2 − 8z

2)
ρ
2 − 4b1b2zρ

2

+ 2b1(−z + µ1 − µ2 + µ3 − µ4) + b2
[
−2z

2
+ ρ

2
+ 4z(µ1 − µ2) + µ

2
1 − µ

2
2

+ (µ3 − µ4)(4z + µ3 + µ4)
]}

,

where Wij = ρ2 +µiµj , Yij = (µi−µj)2 and µk(ρ, z) = wk − z+
√
ρ2 + (z − wk)2

Charging transformation

e
2ψ → e

2ψ̂
=
e2ψ(1− ζ2)2

(1− ζ2e2ψ)2
,

which is be supported by an electric field given by

Âµ =

(
ζ(e2ψ − 1)

1− ζ2e2ψ
, 0, 0, 0

)
.

The usual inverse scattering parametrisation for the black holes is used:

w1 = z1 − σ1 , w2 = z1 + σ1 , w3 = z2 − σ2 , w4 = z2 + σ2 ,
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N = 2 Regularising the Charged Binary Black Hole system

Regularising condition fgtt = 1

for ρ = 0 and z ∈ (−∞, w1), z ∈ (w2, w3), z ∈ (w4,∞)

Cf = 16(w1 − w2)
2
(w2 − w3)

2
(w1 − w4)

2
(w3 − w4)

2
,

b1 =
w2

1 − w
2
2 + w2

3 − w
2
4

2(w1 − w2)(w1 + w2 − w3 − w4)(w3 − w4)
log

[
(w1 − w3)(w2 − w4)

(w2 − w3)(w1 − w4)

]
,

b2 = −
w1 − w2 + w3 − w4

2(w1 − w2)(w1 + w2 − w3 − w4)(w3 − w4)
log

[
(w1 − w3)(w2 − w4)

(w2 − w3)(w1 − w4)

]
.

φ

w1
w3w2

w4

z

E3 Embedding of the black hole event horizons for z1 = 5, z2 = 15, m1 = 4, m2 = 4.
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Twin binary BH system for different separation z1 − z2
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N = 2: Conserved Charges of the Black Hole Binary

The electric charge

Qi = −
1

4π

∫ 2π

0
dφ

∫ w2i

w2i−1
dz ρ g

−1
tt ∂ρAt

∣∣
ρ=0 =

2ζσi

1− ζ2
.

The Mass

Mi =
1

4

∫ w2i

w2i−1
dz
(
ρ g
−1
tt ∂ρgtt − 2At∂ρAt

)∣∣
ρ=0 =

1 + ζ2

1− ζ2
σi .

Masses anche electric charges are not 4 independent quantities but just three

Qi =
2ζ

1 + ζ2
Mi .

The entropy for each black hole is taken as a quarter of the event horizon area

Si =
1

4

∫ 2π

0
dφ

∫ w2i

w2i−1
dz
√
gzzgϕϕ

∣∣
ρ=0 ,

S1 = π
(w2 − w1)2(w4 − w1)

(w3 − w1)(1− ζ2)2
e
−2b1(w2−w3+w4)−2b2(w2

2−w
2
3+w2

4)
,

S2 = π
(w4 − w3)2(w4 − w1)

(w4 − w2)(1− ζ2)2
e
−2w4(b1+b2w4)

.
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Smarr law for the charged binary system

Temperature of the event horizons

Ti =
ασi
2Si

.

where
σi =

√
M2
i
−Q2

i
.

The Coulomb electric potential Θ evaluated on both the event horizons takes the
same value

Θ = −ξµAµ
∣∣
ρ=0 = α(ζ −Θ∞) .

Smarr law

Mi = 2TiSi −ΘQi =⇒
2∑
i=1

Mi =

2∑
i=1

(
2TiSi −ΘQi

)
First and second (S�� < S⊙) laws of black hole thermodynamics can be verified

Note that the proper distance between the two event horizon surfaces is finite:

` =

∫ w3

w2

√
gzzdz <∞ .
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Majumdar–Papapetrou limit

The regularising constraints have some special points for which bi = 0 ∀i:

{w1 = w2 , w3 = w4} =⇒ zi − σi = zi + σi =⇒ σi =
√
M2
i
−Q2

i
= 0

When Mi = Qi we have the extremal version of our charged binary system in the
external gravitational field:

dŝ
2

= −e2ψ̂dt2 + e
−2ψ̂(

dρ
2

+ dz
2

+ ρ
2
dφ
)
,

Ât =

(
1 +

M1√
ρ2 + (z − z1)2

+
M2√

ρ2 + (z − z2)2

)−1
,

where

e
2ψ̂

= Â
2
t .

which is exactly the double Majumdar–Papapetrou metric.
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Summary, Conclusions & Pespectives

Analytical multi black hole solutions at equilibrium can be build in General Rel-
ativity without conical singularities. The equilibrium is provided by a generic
multipolar external gravitational field.

We show how to build charged, rotating, NUTty, accelerating extensions, thanks
to solution generating techniques, providing the most general black hole family
of pure GR. Smarr, first and second law can be explicitly verified.
These metrics, in certain limits, can also describe a large family of particle in
GR.

The External field can also provide a motivation for accelerating black holes
and C-metric opening the possibility of a pair production of black holes in
external gravitational field.

Generalisation to other gravitational backgrounds or to other gravitational the-
ories such as scalar tensor theories, Brans-Dicke or f(R) can be pursuit.
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